Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Many recent works have shown that if a given signal admits a sufficiently sparse representation in a given dictionary, then this representation is recovered by several standard optimization algorithms, in particular the convex ℓ1 minimization approac ...
This article presents an alteration of greedy algorithms like thresholding or (Orthogonal) Matching Pursuit which improves their performance in finding sparse signal representations in redundant dictionaries. These algorithms can be split into a sensing an ...
Consider a scenario where a distributed signal is sparse and is acquired by various sensors that see different versions. Thus, we have a set of sparse signals with both some common parts, and some variations. The question is how to acquire such signals and ...
Compressed sensing (CS) suggests that a signal, sparse in some basis, can be recovered from a small number of random projections. In this paper, we apply the CS theory on sparse background-subtracted silhouettes and show the usefulness of such an approach ...
We consider the task of recovering correlated vectors at a central decoder based on fixed linear measurements obtained by distributed sensors. A general formulation of the problem is proposed, under both a universal and an almost sure reconstruction requir ...
This paper analyzes the performance of the simple thresholding algorithm for sparse signal representations. In particular, in order to be more realistic we introduce a new probabilistic signal model which assumes randomness for both the amplitude and also ...
This article extends the concept of it compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic ...
Numerous applications demand that we manipulate large sets of very high-dimensional signals. A simple yet common example is the problem of finding those signals in a database that are closest to a query. In this paper, we tackle this problem by restricting ...
In this article we present a signal model for classification based on a low dimensional dictionary embedded into the high dimensional signal space. We develop an alternate projection algorithm to find the embedding and the dictionary and finally test the c ...
In the last decade we observed an increasing interaction between data compression and sparse signals approximations. Sparse approximations are desirable because they compact the energy of the signals in few elements and correspond to a structural simplific ...