AtomismAtomism (from Greek ἄτομον, atomon, i.e. "uncuttable, indivisible") is a natural philosophy proposing that the physical universe is composed of fundamental indivisible components known as atoms. References to the concept of atomism and its atoms appeared in both ancient Greek and ancient Indian philosophical traditions. Leucippus is the earliest figure whose commitment to atomism is well attested and he is usually credited with inventing atomism. He and other ancient Greek atomists theorized that nature consists of two fundamental principles: atom and void.
Critical exponentCritical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its general features. For instance, for ferromagnetic systems, the critical exponents depend only on: the dimension of the system the range of the interaction the spin dimension These properties of critical exponents are supported by experimental data.
Dihydrogen cationThe dihydrogen cation or hydrogen molecular ion is a cation (positive ion) with formula H2+. It consists of two hydrogen nuclei (protons) sharing a single electron. It is the simplest molecular ion. The ion can be formed from the ionization of a neutral hydrogen molecule (H2) by electron impact. It is commonly formed in molecular clouds in space by the action of cosmic rays. The dihydrogen cation is of great historical, theoretical, and experimental interest.
Static forces and virtual-particle exchangeStatic force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.
Gröbner basisIn mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring K[x1, ..., xn] over a field K. A Gröbner basis allows many important properties of the ideal and the associated algebraic variety to be deduced easily, such as the dimension and the number of zeros when it is finite.
Regge theoryIn quantum physics, Regge theory (ˈrɛdʒeɪ) is the study of the analytic properties of scattering as a function of angular momentum, where the angular momentum is not restricted to be an integer multiple of ħ but is allowed to take any complex value. The nonrelativistic theory was developed by Tullio Regge in 1959. The simplest example of Regge poles is provided by the quantum mechanical treatment of the Coulomb potential or, phrased differently, by the quantum mechanical treatment of the binding or scattering of an electron of mass and electric charge off a proton of mass and charge .
Universality (dynamical systems)In statistical mechanics, universality is the observation that there are properties for a large class of systems that are independent of the dynamical details of the system. Systems display universality in a scaling limit, when a large number of interacting parts come together. The modern meaning of the term was introduced by Leo Kadanoff in the 1960s, but a simpler version of the concept was already implicit in the van der Waals equation and in the earlier Landau theory of phase transitions, which did not incorporate scaling correctly.
Basis (linear algebra)In mathematics, a set B of vectors in a vector space V is called a basis (: bases) if every element of V may be written in a unique way as a finite linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called . Equivalently, a set B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B.
Fundamental interactionIn physics, the fundamental interactions or fundamental forces are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: gravity electromagnetism weak interaction strong interaction The gravitational and electromagnetic interactions produce long-range forces whose effects can be seen directly in everyday life. The strong and weak interactions produce forces at minuscule, subatomic distances and govern nuclear interactions inside atoms.