Concept

Static forces and virtual-particle exchange

Summary
Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force. The virtual-particle description of static forces is capable of identifying the spatial form of the forces, such as the inverse-square behavior in Newton's law of universal gravitation and in Coulomb's law. It is also able to predict whether the forces are attractive or repulsive for like bodies. The path integral formulation is the natural language for describing force carriers. This article uses the path integral formulation to describe the force carriers for spin 0, 1, and 2 fields. Pions, photons, and gravitons fall into these respective categories. There are limits to the validity of the virtual particle picture. The virtual-particle formulation is derived from a method known as perturbation theory which is an approximation assuming interactions are not too strong, and was intended for scattering problems, not bound states such as atoms. For the strong force binding quarks into nucleons at low energies, perturbation theory has never been shown to yield results in accord with experiments, thus, the validity of the "force-mediating particle" picture is questionable. Similarly, for bound states the method fails. In these cases, the physical interpretation must be re-examined. As an example, the calculations of atomic structure in atomic physics or of molecular structure in quantum chemistry could not easily be repeated, if at all, using the "force-mediating particle" picture. Use of the "force-mediating particle" picture (FMPP) is unnecessary in nonrelativistic quantum mechanics, and Coulomb's law is used as given in atomic physics and quantum chemistry to calculate both bound and scattering states.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.