Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We present a detailed study of the luminescence at 3.42 eV usually observed in a-plane epitaxial lateral overgrowth (ELO) GaN grown by hydride vapor phase epitaxy on r-plane sapphire. This band is related to radiative recombination of excitons in a commonly encountered extended defect of a-plane GaN: I-1 basal stacking fault. Cathodoluminescence measurements show that these stacking faults are essentially located in the windows and the N-face wings of the ELO-GaN and that they can appear isolated as well as organized into bundles. Time-integrated and time-resolved photoluminescence, supported by a qualitative model, evidence not only the efficient trapping of free excitons (FXs) by basal plane stacking faults but also some localization inside I-1 stacking faults themselves. Measurements at room temperature show that FXs recombine efficiently with rather long luminescence decay times (360 ps), comparable to those encountered in high-quality GaN epilayers. We discuss the possible role of I-1 stacking faults in the overall recombination mechanism of excitons.
Nicolas Grandjean, Jean-François Carlin, Denis Martin, Joachim Armand Simonne Ciers
Anna Fontcuberta i Morral, Luca Francaviglia