The mathematical facet of modern crystallography is essentially based on analytical geometry, linear algebra as well as group theory. This study endeavours to approach the geometry and symmetry of crystals using the tools furnished by differential geometry and the theory of Lie groups. These two branches of mathematics being little known to crystallographers, the pertinent definitions such as differentiable manifold, tangent space or metric tensor or even isometries on a manifold together with some important results are given first. The example of euclidean space, taken as riemannian manifold, is treated, in order to show that the affine aspect of this space is not at all an axiom but the consequence of the euclidean nature of the manifold. Attention is then directed to a particular subgroup of the group of euclidean isometries, namely that of translations. This has the property of a Lie group and it turns out that the action of its elements, as well as those of its Lie algebra, plays an important role in generating a lattice on a manifold and in its tangent space, too. In particular, it is pointed out that one and only one finite and free module of the Lie algebra of the group of translations can generate both, modulated and non-modulated lattices. This last classification therefore appears continuous rather than black and white and is entirely determined by the parametrisation considered. Since a lattice in a tangent space has the properties of a vector space, it always possesses the structure of a finite, free module, which shows that the assignment of aperiodicity to modulated structures is quite subjective, even unmotivated. Thanks to the concept of representation of a lattice or a crystal in a tangent space, novel definitions of the notions of symmetry operation of a space group and point symmetry operation, as well as symmetry element and intrinsic translation arise; they altogether naturally blend into the framework of differential geometry. In order to conveniently pass from one representation of a crystal in one tangent space to another or to the structure on a manifold, an equivalence relation on the tangent bundle of the manifold is introduced. This relation furthermore allows to extend the concept of symmetry operation to the tangent bundle; this extension furnishes, particularly in the euclidean case, a very practical way of representing symmetry operations of space groups completely devoid of any dependence on an origin, or, in other words, in which each and every point may be considered the origin. The investigation of the group of translations having being completed, the study of the linear parts of the isometries comes naturally. Based on the fact that the set of linear parts possesses the structure of a Lie group, several results are proven in a rigorous manner, such as the fact that a rotation angle of π/3 is incompatible with a three-dimensional cubic lattice. Procedures for determining different crystal systems in function o
Donna Testerman, Martin W. Liebeck