Summary
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X). For an object in a metric space, its symmetries form a subgroup of the isometry group of the ambient space. This article mainly considers symmetry groups in Euclidean geometry, but the concept may also be studied for more general types of geometric structure. We consider the "objects" possessing symmetry to be geometric figures, images, and patterns, such as a wallpaper pattern. For symmetry of physical objects, one may also take their physical composition as part of the pattern. (A pattern may be specified formally as a scalar field, a function of position with values in a set of colors or substances; as a vector field; or as a more general function on the object.) The group of isometries of space induces a group action on objects in it, and the symmetry group Sym(X) consists of those isometries which map X to itself (as well as mapping any further pattern to itself). We say X is invariant under such a mapping, and the mapping is a symmetry of X. The above is sometimes called the full symmetry group of X to emphasize that it includes orientation-reversing isometries (reflections, glide reflections and improper rotations), as long as those isometries map this particular X to itself. The subgroup of orientation-preserving symmetries (translations, rotations, and compositions of these) is called its proper symmetry group. An object is chiral when it has no orientation-reversing symmetries, so that its proper symmetry group is equal to its full symmetry group. Any symmetry group whose elements have a common fixed point, which is true if the group is finite or the figure is bounded, can be represented as a subgroup of the orthogonal group O(n) by choosing the origin to be a fixed point.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.