Copeland's methodCopeland's method is a ranked voting method based on a scoring system of pairwise "wins", "losses", and "ties". The method has a long history: Ramon Llull described the system in 1299, so it is sometimes referred to as "Llull's method" The Marquis de Condorcet described a similar system in the 1780s, so the method could be referred to as "Condorcet's method", but instead other systems were subsequently devised that choose the Condorcet winner. Arthur Herbert Copeland described the system in the 1950s, so it has been frequently been called "Copeland's method".
HyperplaneIn geometry, a hyperplane is a subspace whose dimension is one less than that of its ambient space. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined. In different settings, hyperplanes may have different properties.
Operator theoryIn mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra.
Cumulative votingCumulative voting (also accumulation voting, weighted voting or multi-voting) is a multiple-winner method intended to promote more proportional representation than winner-take-all elections such as block voting or first past the post. Cumulative voting is used frequently in corporate governance, where it is mandated by some (7) U.S. states (see e.g., Minn. Stat. Sec. 302A.111 subd. 2(d).). Cumulative voting was used to elect the Illinois House of Representatives from 1870 until its repeal in 1980 and used in England and Scotland in the late 19th century to elect some school boards.
Stone's theorem on one-parameter unitary groupsIn mathematics, Stone's theorem on one-parameter unitary groups is a basic theorem of functional analysis that establishes a one-to-one correspondence between self-adjoint operators on a Hilbert space and one-parameter families of unitary operators that are strongly continuous, i.e., and are homomorphisms, i.e., Such one-parameter families are ordinarily referred to as strongly continuous one-parameter unitary groups.
Highest averages methodA highest-averages method, also called a divisor method, is a class of methods for allocating seats in a parliament among agents such as political parties or federal states. A divisor method is an iterative method: at each iteration, the number of votes of each party is divided by its divisor, which is a function of the number of seats (initially 0) currently allocated to that party. The next seat is allocated to the party whose resulting ratio is largest.
DjVuDjVu (ˌdeɪʒɑːˈvuː , like French "déjà vu") is a computer designed primarily to store , especially those containing a combination of text, line drawings, indexed color images, and photographs. It uses technologies such as image layer separation of text and background/images, progressive loading, arithmetic coding, and lossy compression for (monochrome) images. This allows high-quality, readable images to be stored in a minimum of space, so that they can be made available on the web.
D'Hondt methodThe D'Hondt method, also called the Jefferson method or the greatest divisors method, is an apportionment method for allocating seats in parliaments among federal states, or in proportional representation among political parties. It belongs to the class of highest-averages methods. The method was first described in 1792 by future U.S. president Thomas Jefferson. It was re-invented independently in 1878 by Belgian mathematician Victor D'Hondt, which is the reason for its two different names.