BECOOL: Ballooning eigensolver with COOL finite elements
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis we investigate different ways of approximating the solution of the chemical master equation (CME). The CME is a system of differential equations that models the stochastic transient behaviour of biochemical reaction networks. It does so by d ...
A partitioned implicit-explicit orthogonal Runge-Kutta method (PIROCK) is proposed for the time integration of diffusion-advection-reaction problems with possibly severely stiff reaction terms and stiff stochastic terms. The diffusion terms are solved by t ...
Band structure calculations for photonic crystals require the numerical solution of eigenvalue problems. In this paper, we consider crystals composed of lossy materials with frequency-dependent permittivities. Often, these frequency dependencies are modele ...
Given a nonsymmetric matrix A, we investigate the effect of perturbations on an invariant subspace of A. The result derived in this paper differs from Stewart's classical result and sometimes yields tighter bounds. Moreover, we provide norm estimates for t ...
In this project, we study and compare two methods to solve stochastic ordinary differential equations. The first is the Monte Carlo method and the second uses Polynomial Chaos. In the first part, we will solve a stochastic ordinary differential equation by ...
Identification of kinetic models and estimation of reaction and mass-transfer parameters can be performed using the extent-based identification method, whereby each chemical/physical process is treated individually. This method is used here to analyze gas- ...
This work is concerned with numerical methods for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In particular, we focus on eigenvalue problems for which the evaluation of the matrix-valued function is computationally expensive. ...
This work considers eigenvalue problems that are nonlinear in the eigenvalue parameter. Given such a nonlinear eigenvalue problem T, we are concerned with finding the minimal backward error such that T has a set of prescribed eigenvalues with prescribed al ...
Identification of kinetic models and estimation of reaction and mass-transfer parameters can be performed using the extent-based identification method, whereby each chemical/physical process is handled separately [1-3]. This method is used here to analyze ...
The QR algorithm is the method of choice for computing all eigenvalues of a dense nonsymmetric matrix A. After an initial reduction to Hessenberg form, a QR iteration can be viewed as chasing a small bulge from the top left to the bottom right corner along ...