The Banff challenge: Statistical detection of a noisy signal
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The likelihood function is a fundamental component in Bayesian statistics. However, evaluating the likelihood of an observation is computationally intractable in many applications. In this paper, we propose a non-parametric approximation of the likelihood ...
This thesis studies statistical inference in the high energy physics unfolding problem, which is an ill-posed inverse problem arising in data analysis at the Large Hadron Collider (LHC) at CERN. Any measurement made at the LHC is smeared by the finite reso ...
We tackle the fundamentally ill-posed problem of 3D human localization from monocular RGB images. Driven by the limitation of neural networks outputting point estimates, we address the ambiguity in the task by predicting confidence intervals through a loss ...
xtreme value analysis is concerned with the modelling of extreme events such as floods and heatwaves, which can have large impacts. Statistical modelling can be useful to better assess risks even if, due to scarcity of measurements, there is inherently ver ...
We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be exp ...
Humans are comparison machines: comparing and choosing an item among a set of alternatives (such as objects or concepts) is arguably one of the most natural ways for us to express our preferences and opinions. In many applications, the analysis of data con ...
We consider the inference problem for parameters in stochastic differential equation models from discrete time observations (e.g. experimental or simulation data). Specifically, we study the case where one does not have access to observations of the model ...
We consider the problem of measuring how much a system reveals about its secret inputs. We work in the black-box setting: we assume no prior knowledge of the system's internals, and we run the system for choices of secrets and measure its leakage from the ...
Wasserstein distances are metrics on probability distributions inspired by the problem of optimal mass transportation. Roughly speaking, they measure the minimal effort required to reconfigure the probability mass of one distribution in order to recover th ...
Kinetic models of metabolism can be constructed to predict cellular regulation and devise metabolic engineering strategies, and various promising computational workflows have been developed in recent years for this. Due to the uncertainty in the kinetic pa ...