**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Information-theoretic secrecy for wireless networks

Abstract

The aim of information-theoretic secrecy is to ensure that an eavesdropper who listens to the wireless transmission of a message can only collect an arbitrarily small number of information bits about this message. In contrast to cryptography, there are no assumptions on the computational power of the eavesdropper. Information-theoretically secret communication has been studied for many particular wireless network topologies. In the main part of this thesis, we consider such communication for arbitrary acyclic wireless network topologies. We provide lower and upper bounds on the strong perfect secrecy capacity for the case when the channels of the network are either Gaussian or deterministic. These results are based on the recent understanding of the capacity of wireless networks (without secrecy constraints) by Avestimehr, Diggavi and Tse. As a side result, we give inner and outer bounds on the capacity region for the multisource problem in arbitrary wireless networks with Gaussian or deterministic signal interaction. For linear deterministic signal interaction, we find the exact capacity region. For Gaussian signal interaction, we are able to bound the gap between the two bounds on the capacity region. This gap depends only on the network topology, but not on the signal-to-noise ratio (SNR), which leads to an approximation of the capacity region for the high SNR regime. We further consider a particular network topology, called the fan-network, in which we assume that an eavesdropper has physical access to every node in a subset of the relay nodes. We give a general upper bound on the perfect secrecy capacity, and we characterize the perfect secrecy capacity for two special cases. In the second part of the thesis, we consider interactive secrecy, i.e., secrecy in the presence of a public feedback link from the destination to the source. We focus on the problem of secret key generation rather than secret communication. The benefit of public discussion for secret key generation in a broadcast channel was first shown by Maurer. We extend his ideas to a relay network called the line network, leading to a lower bound on the strongly secret key capacity for this network topology. Finally, we introduce a new channel coding setup called the interference-multiple access (IMA) channel. This channel is a variant of the interference channel where one of the receivers is required to decode the messages from both transmitters. We derive an inner bound on the capacity region of the IMA channel, as well as an outer bound for the so-called structured IMA channel. In a semi-deterministic version of the structured IMA channel, the bounds match, providing a characterization of the capacity region. In the Gaussian case, we obtain a 1 bit-approximation of the capacity region. We also show an inner bound on the equivocation-capacity region for the IMA channel, where we require that part of the private message for one receiver is kept information-theoretically secret from the other receiver.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (12)

Related concepts (39)

Related publications (187)

Information, Calcul, Communication: Introduction à la pensée informatique

Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

Information, Calcul, Communication: Introduction à la pensée informatique

Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

Digital Signal Processing [retired]

The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a

Network topology

Network topology is the arrangement of the elements (links, nodes, etc.) of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks. Network topology is the topological structure of a network and may be depicted physically or logically. It is an application of graph theory wherein communicating devices are modeled as nodes and the connections between the devices are modeled as links or lines between the nodes.

Wireless network

A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking allows homes, telecommunications networks and business installations to avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.

Information-theoretic security

A cryptosystem is considered to have information-theoretic security (also called unconditional security) if the system is secure against adversaries with unlimited computing resources and time. In contrast, a system which depends on the computational cost of cryptanalysis to be secure (and thus can be broken by an attack with unlimited computation) is called computationally, or conditionally, secure. An encryption protocol with information-theoretic security is impossible to break even with infinite computational power.

Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connec ...

Bryan Alexander Ford, Antoine Rault, Amogh Pradeep, Hira Javaid

Internet blackouts are challenging environments for anonymity and censorship resistance. Existing popular anonymity networks (e.g., Freenet, I2P, Tor) rely on Internet connectivity to function, making them impracticable during such blackouts. In such a set ...

2022,

Succinct zero knowledge proofs (i.e. zkSNARKs) are powerful cryptographic tools that enable a prover to convince a verifier that a given statement is true without revealing any additional information. Their attractive privacy properties have led to much ac ...