Compressed sensing for radio interferometry: spread spectrum imaging techniques
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In many applications - such as compression, de-noising and source separation - a good and efficient signal representation is characterized by sparsity. This means that many coefficients are close to zero, while only few ones have a non-negligible amplitude ...
Matching pursuit decomposes a signal into a linear expansion of functions selected from a redundant dictionary, isolating the signal structures that are coherent with respect to a given dictionary. In this paper we focus on the Matching Pursuit representat ...
This paper studies quantization error in the context of Matching Pursuit coded streams and proposes a new coefficient quantization scheme taking benefit of the Matching Pursuit properties. The coefficients energy in Matching Pursuit indeed decreases with t ...
Matching Pursuit decomposes a signal into a linear expansion of functions selected from a redundant dictionary, isolating the signal structures that are coherent with respect to a given dictionary. In this paper we focus on the Matching Pursuit representat ...
There is a growing interest on adapted signal expansions for efficient sparse approximations. For this purpose, signal expansions on over-complete bases are of high interest. Several strategies exist in order to get sparse approximations of a signal as a s ...