Compressed sensing for radio interferometry: spread spectrum imaging techniques
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In many applications - such as compression, de-noising and source separation - a good and efficient signal representation is characterized by sparsity. This means that many coefficients are close to zero, while only few ones have a non-negligible amplitude ...
Matching pursuit decomposes a signal into a linear expansion of functions selected from a redundant dictionary, isolating the signal structures that are coherent with respect to a given dictionary. In this paper we focus on the Matching Pursuit representat ...
This paper studies quantization error in the context of Matching Pursuit coded streams and proposes a new coefficient quantization scheme taking benefit of the Matching Pursuit properties. The coefficients energy in Matching Pursuit indeed decreases with t ...
There is a growing interest on adapted signal expansions for efficient sparse approximations. For this purpose, signal expansions on over-complete bases are of high interest. Several strategies exist in order to get sparse approximations of a signal as a s ...
Matching Pursuit decomposes a signal into a linear expansion of functions selected from a redundant dictionary, isolating the signal structures that are coherent with respect to a given dictionary. In this paper we focus on the Matching Pursuit representat ...