Adaptive finite elements with large aspect ratio for electroosmotic and pressure-driven microflows
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a numerical model for the approximation of multiphase flows with free surfaces and strong interfacial effects. The model relies on the multiphase incompressible Navier-Stokes equations, and includes surface tension effects on the interfaces betw ...
We propose a mathematical and numerical model for the simulation of the heart function that couples cardiac electrophysiology, active and passive mechanics and hemodynamics, and includes reduced models for cardiac valves and the circulatory system. Our mod ...
Fluid driven fractures propagate in the upper earth crust either naturally or in response to engineeredfluid injections. The quantitative prediction of their evolution is critical in order to better understandtheir dynamics as well as to optimize their cre ...
We present a novel framework for the reconstruction of 1D composite signals assumed to be a mixture of two additive components, one sparse and the other smooth, given a finite number of linear measurements. We formulate the reconstruction problem as a cont ...
An a posteriori error estimate is derived for the approximation of the transport equation with a time dependent transport velocity. Continuous, piecewise linear, anisotropic finite elements are used for space discretization, the Crank-Nicolson scheme schem ...
We propose and numerically assess three segregated ( partitioned) algorithms for the numerical solution of the coupled electromechanics problem for the left human ventricle. We split the coupled problem into its core mathematical models and we proceed to t ...
We consider an adaptive isogeometric method (AIGM) based on (truncated) hierarchical B-splines and present the study of its numerical properties. By following [10, 12, 11], optimal convergence rates of the AIGM can be proved when suitable approximation cla ...
In this paper, we propose a monolithic algorithm for the numerical solution of the electromechanics model of the left ventricle in the human heart. Our coupled model integrates the monodomain equation with the Bueno-Orovio minimal model for electrophysiolo ...
We propose a method for modelling spatially dependent functional data, based on regression with differential regularization. The regularizing term enables to include problem-specific information about the spatio-temporal variation of phenomenon under study ...