Publication

Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation

Abstract

We present a procedure that compensates for phase aberrations in digital holographic microscopy by computing a polynomial phase mask directly from the hologram. The phase-mask parameters are computed automatically without knowledge of physical values such as wave vectors, focal lengths, or distances. This method enables one to reconstruct correct and accurate phase distributions, even in the presence of strong and high-order aberrations. Examples of applications are shown for microlens imaging and for compensating for the deformations associated with a tilted thick plate. Finally we show that this method allows compensation for the curvature of the specimen, revealing its surface defects and roughness. Examples of applications are shown for microlenses and metallic sphere imaging.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.