Predictive validityIn psychometrics, predictive validity is the extent to which a score on a scale or test predicts scores on some criterion measure. For example, the validity of a cognitive test for job performance is the correlation between test scores and, for example, supervisor performance ratings. Such a cognitive test would have predictive validity if the observed correlation were statistically significant. Predictive validity shares similarities with concurrent validity in that both are generally measured as correlations between a test and some criterion measure.
StochasticStochastic (stəˈkæstɪk; ) refers to the property of being well described by a random probability distribution. Although stochasticity and randomness are distinct in that the former refers to a modeling approach and the latter refers to phenomena themselves, these two terms are often used synonymously. Furthermore, in probability theory, the formal concept of a stochastic process is also referred to as a random process.
Pareto principleThe Pareto principle states that for many outcomes, roughly 80% of consequences come from 20% of causes (the "vital few"). Other names for this principle are the 80/20 rule, the law of the vital few, or the principle of factor sparsity. Management consultant Joseph M. Juran developed the concept in the context of quality control and improvement after reading the works of Italian sociologist and economist Vilfredo Pareto, who wrote about the 80/20 connection while teaching at the University of Lausanne.
Edgeworth boxIn economics, an Edgeworth box, sometimes referred to as an Edgeworth-Bowley box, is a graphical representation of a market with just two commodities, X and Y, and two consumers. The dimensions of the box are the total quantities Ωx and Ωy of the two goods. Let the consumers be Octavio and Abby. The top right-hand corner of the box represents the allocation in which Octavio holds all the goods, while the bottom left corresponds to complete ownership by Abby. Points within the box represent ways of allocating the goods between the two consumers.
Statistical conclusion validityStatistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or "reasonable". This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to "reasonable" conclusions that use: quantitative, statistical, and qualitative data. Fundamentally, two types of errors can occur: type I (finding a difference or correlation when none exists) and type II (finding no difference or correlation when one exists).