Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Early works(1) and recent advances in thin-film lithium niobate (LiNbO3) on insulator have enabled low-loss photonic integrated circuits(2,3), modulators with improved half-wave voltage(4,5), electro-optic frequency combs(6) and on-chip electro-optic devic ...
Photonic crystal (PhC) cavities combine ultra-high quality (Q) factors with small mode volumes, resulting in an enhancement of the light-matter interaction at the nanoscale, which, beyond fundamental studies is advantageous for countless applications in ph ...
Combining optical gain in direct-bandgap III-V materials with tunable optical feedback offered by advanced photonic integrated circuits is key to chip-scale external-cavity lasers (ECL), offering wideband tunability along with low optical linewidths. Exter ...
III-nitride waveguides featuring AlInN claddings and GaN/AlGaN quantum wells (QWs) offer promising perspectives for applications in many fields of short-wavelength photonics. Thanks to their nearly lattice-matched nature, these structures exhibit an excell ...
Photonic integrated circuits are paving the way for novel on-chip functionalities with diverse applications in communication, computing, and beyond. The integration of on-chip light sources, especially single-mode lasers, is crucial for advancing those pho ...
Photonic integrated circuits (PICs) are the subject of massive interest due to the range of applications they can provide at a huge scale while building on well-established CMOS technologies. One of the critical parameters defining a technology's maturity ...
We report on a semiconductor disk laser emitting 1.5 W of output power at the wavelength of 745 nm via intracavity frequency doubling. The high power level and the >40 nm tuning range make the laser a promising tool for medical treatments that rely on phot ...
Over the last two decades III-nitride optoelectronic devices have experienced an impressive evolution in terms of performance. However, their potential is far from being fully exploited. Although they offer bandgaps from the deep UV to the infrared spectra ...
The III-nitride semiconductor material system - (InAlGa)N - is of highest interest for optoelectronic applications due to its direct bandgap, tunable from the ultraviolet to the infrared spectral range. The most well-known are white light-emitting diodes, ...
Chip-based, single-frequency and low phase-noise integrated photonic laser diodes emitting in the violet (412 nm) and blue (461 nm) regime are demonstrated. The GaN-based edge-emitting laser diodes were coupled to high-quality on-chip micro-resonators for ...