Betweenness centralityIn graph theory, betweenness centrality is a measure of centrality in a graph based on shortest paths. For every pair of vertices in a connected graph, there exists at least one shortest path between the vertices such that either the number of edges that the path passes through (for unweighted graphs) or the sum of the weights of the edges (for weighted graphs) is minimized. The betweenness centrality for each vertex is the number of these shortest paths that pass through the vertex.
Max-flow min-cut theoremIn computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink. This is a special case of the duality theorem for linear programs and can be used to derive Menger's theorem and the Kőnig–Egerváry theorem.
Arborescence (graph theory)In graph theory, an arborescence is a directed graph in which, for a vertex u (called the root) and any other vertex v, there is exactly one directed path from u to v. An arborescence is thus the directed-graph form of a rooted tree, understood here as an undirected graph. Equivalently, an arborescence is a directed, rooted tree in which all edges point away from the root; a number of other equivalent characterizations exist. Every arborescence is a directed acyclic graph (DAG), but not every DAG is an arborescence.
Admissible heuristicIn computer science, specifically in algorithms related to pathfinding, a heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, i.e. the cost it estimates to reach the goal is not higher than the lowest possible cost from the current point in the path. It is related to the concept of consistent heuristics. While all consistent heuristics are admissible, not all admissible heuristics are consistent. An admissible heuristic is used to estimate the cost of reaching the goal state in an informed search algorithm.
Tutte polynomialThe Tutte polynomial, also called the dichromate or the Tutte–Whitney polynomial, is a graph polynomial. It is a polynomial in two variables which plays an important role in graph theory. It is defined for every undirected graph and contains information about how the graph is connected. It is denoted by . The importance of this polynomial stems from the information it contains about .
Base rate fallacyThe base rate fallacy, also called base rate neglect or base rate bias, is a type of fallacy in which people tend to ignore the base rate (e.g., general prevalence) in favor of the individuating information (i.e., information pertaining only to a specific case). Base rate neglect is a specific form of the more general extension neglect. It is also called prosecutor's fallacy or defense attorney's fallacy when applied to the results of statistical tests (such as DNA tests) in the context of law proceedings.