We propose an algorithm for the reconstruction of the signal induced by cosmic strings in the cosmic microwave background (CMB), from radio-interferometric data at arcminute resolution. Radio interferometry provides incomplete and noisy Fourier measurements of the string signal, which exhibits sparse or compressible magnitude of the gradient due to the Kaiser-Stebbins (KS) effect. In this context the versatile framework of compressed sensing naturally applies for solving the corresponding inverse problem. Our algorithm notably takes advantage of a model of the prior statistical distribution of the signal fitted on the basis of realistic simulations. Enhanced performance relative to the standard CLEAN algorithm is demonstrated by simulated observations under noise conditions including primary and secondary CMB anisotropies.
Jean-Paul Richard Kneib, Emma Elizabeth Tolley, Stefano Corda
Yiming Li, Frédéric Courbin, Georges Meylan, Yi Wang, Richard Massey, Fabio Finelli, Marcello Farina
Stewart Cole, Xin Chen, Jean-Paul Richard Kneib, Eduardo Sanchez, Zheng Zheng, Andrei Variu, Daniel Felipe Forero Sanchez, Hua Zhang, Sun Hee Kim, Cheng Zhao, Anand Stéphane Raichoor, David Schlegel, Jiangyan Yang, Ting Tan, Zhifeng Ding, Arjun Dey