Concept# Cosmic microwave background

Summary

The cosmic microwave background (CMB, CMBR) is microwave radiation that fills all space in the observable universe. It is a remnant that provides an important source of data on the primordial universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s.
CMB is landmark evidence of the Big Bang theory for the origin of the universe. In the Big Bang cosmological models, during the earliest periods, the universe was filled with an opaque fog of dense, hot plasma of sub-atomic particles. As the universe expanded, this plasma cooled to the poi

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (104)

Related concepts (159)

Big Bang

The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolu

Physical cosmology

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and d

Redshift

In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decreas

Related courses (63)

Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.

Les antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base pour analyser et concevoir des antennes pour des applications modernes.

This course is an introduction to microwaves and microwave passive circuits. A special attention is given to the introduction of the notion of distributed circuits and to the scattering matrix

Related publications (100)

Loading

Loading

Loading

Related units (53)

Related lectures (127)

Jan Hamann, Julien Lesgourgues

The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation for current data, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m(nu) presently derived from LSS combined with cosmic microwave background (CMB) data does not in fact arise from the possible small-scale power suppression due to neutrino free-streaming, if we limit the model framework to minimal Lambda CDM+m(nu). However, in more complicated models, such as those extended with extra light degrees of freedom and a dark energy equation of state parameter w differing from -1, shape information becomes crucial for the resolution of parameter degeneracies. This conclusion will remain true even when data from the Planck spacecraft are combined with SDSS DR7 data. In the course of our analysis, we update both the BAO likelihood function by including an exact numerical calculation of the time of decoupling, as well as the HPS likelihood, by introducing a new dewiggling procedure that generalises the previous approach to models with an arbitrary sound horizon at decoupling. These changes allow a consistent application of the BAO and HPS data sets to a much wider class of models, including the ones considered in this work. All the cases considered here are compatible with the conservative 95%-bounds Sigma m(nu) < 1.16 eV, N-eff = 4.8 +/- 2.0.

2010Fabio Finelli, Jan Hamann, Julien Lesgourgues

This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l greater than or similar to 40) are extremely well described by the standard spatially-flat six-parameter ACDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be theta* = (1.04147 +/- 0.00062) x 10(-2), Omega(b)h(2) = 0.02205 +/- 0.00028, Omega(c)h(2) = 0.1199 +/- 0.0027, and n(s) = 0.9603 +/- 0.0073, respectively (note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H-0 = (67.3 +/- 1.2) km s(-1) Mpc(-1), and a high value of the matter density parameter, Omega(m) = 0.315 +/- 0.017. These values are in tension with recent direct measurements of H-0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ACDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ACDM cosmology. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r(0.002) < 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find N-eff = 3.30 +/- 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N-eff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13(-0.10)(+0.13). We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ACDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 less than or similar to l less than or similar to 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an "anomaly" in an otherwise self-consistent analysis of the Planck temperature data.

Noise radiated by different industrial structures that surround us in daily life are more and more considered as environmental pollution. Standards defining a tolerable sound level for each of these noise sources are regularly called into question and respecting them becomes an additional constraint for manufacturers. The last decades have seen the increasing development of means used to fight these noise disturbances. The wide diversity of noises perceived as harmful has contributed to the progressive increase in specificity and efficiency of solutions proposed to reduce the disturbances. For some applications, passive solutions, based on the use of materials capable of absorbing or deviating acoustic or vibratory waves, have progressively been replaced by "active" solutions, based on the generation of an acoustic wave of opposite phase to the disturbing one radiated by the noise source. Power transformers are sources for which passive solutions (anti-noise walls) are usually expensive and not very efficient, particularly at low frequency. Furthermore, characteristics of noise radiated by transformers (low frequency tone noise) are such that they are particularly well suited for the implementation of an active solution. Typically, an active control system dedicated to transformers (feedforward) is composed of actuators, used to generate the anti-noise and usually located near the tank, sensors, used to measure the attenuation obtained and to provide a reference signal, and a controller used to drive the actuators as a function of the information collected by the sensors. When the sensors are microphones, they are usually moved away from the noise source, in such a way that they pick up acoustic pressure that is representative of the noise propagated far away. In the vicinity of the source, local acoustic phenomena can occur which are not propagated far away. A microphone located near the noise source would therefore pick up an acoustic pressure that did not necessarily represent the one that effectively exists far away, the area where we are in fact seeking to reduce the noise. These phenomena, frequently grouped under the term "nearfield" tend to decrease the performance of the control system, owing to the fact that the controller seeks in this case to reduce an acoustic pressure which is not representative of the noise to be reduced. In practice, the significant amount of wiring required as a result of the positioning of the microphones in the far field, has a non-negligible effect on the cost of the system. The possibility of bringing the sensors closer to the source is sufficiently advantageous to envisage to studying the feasibility and the resulting consequences. The present approach consists in representing the primary field radiated by a vibrating structure in terms of a set of "acoustic radiation modes". The use of radiation modes to characterise the behaviour of a structure has received increasing attention since the beginning of 90's, especially for active control applications. Usually, this approach consists in representing the radiated power in terms of a set of surface velocity distributions, called radiation modes, that have the property of radiating independently of each other. Radiation modes result from diagonalization of a discrete expression of the radiation operator. We propose here to study the consequences on the radiation modes of a structure from bringing the microphones closer to it. We will study how the acoustic field varies with the distance and how this can be used to obtain a model, the complexity of which is adapted to the observation distance.