Near-field spectroscopy of a coupled wire-dot nanostructure grown on (311)A GaAs
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A quantum dot is a semiconductor nanostructure that confines the motion of conduction band electrons and valence band holes in all three spatial directions, thus creating fully discrete energy levels. The confinement in the InAs/GaAs material system is gen ...
This thesis presents an experimental study of the time-resolved optical response of three different nanoscale systems: CdSe and PbSe quantum dots, and silver triangular nanoplates. The first part of the thesis is devoted to the understanding of the effects ...
Spatially resolved photoluminescence spectra of thin GaAs quantum wells are measured by near-field spectroscopy, and two-energy autocorrelation functions of the spectra are derived. We demonstrate distinctly different autocorrelation functions for a 3-nm-t ...
In this thesis work, we report scanning near-field optical photoluminescence spectroscopy measurements with at best 200 nm spatial resolution performed on disordered semiconductor V-groove AlGaAs/GaAs quantum wires. In order to interpret the results of the ...
Quantum wells (QWs), quantum wires (QWRs) and quantum dots (QDs) are semiconductor heterostructures with nanoscopic dimensions. At this length scale, their properties are governed by quantum mechanics. The interest in these nanostructures is motivated by a ...
This thesis presents an experimental study of the energy and time-resolved optical response of chemically prepared CdSe nanoparticles with different sizes, shapes (dots, rods, and tetrapods), and lattice structures (wurtzite and zinc blende). The first par ...
A functional integration approach – whose main ingredient is the Hubbard-Stratonovich transformation – for the quantum nonrelativistic many-fermion problem is investigated. With this method, the ground state energy correponds to a systematic expansion in p ...
This thesis reports measurements concerning quantum size effects of single crystalline metallic islands by using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Different sample systems are presented in the following chapters. I ...
We directly investigate, by means of near-field spectroscopy, the spatial distribution of the optical cavity modes of 2D photonic crystal microcavities. Numerical simulations confirm that the photoluminescence maps of quantum dots embedded in the photonic ...
Luminescence spectra of V-groove GaAs/AlGaAs quantum wires are investigated by spatially resolved photoluminescence (PL) spectroscopy using a low temperature scanning near-field optical microscope (SNOM). The statistical analysis of these spectra in terms ...
V C H PUBLISHERS, SUITE 909, 220 E 23RD ST, NEW YORK, NY 10010 USA2004