**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Learning and Control of UAV maneuvers Based on Demonstrations

Abstract

Many maneuvers of Unmanned Aerial Vehicles (UAV) can be considered within a framework of trajectory following. Though this issue can differ from one application to another, they all share the same problem of finding an optimal path (or signal) to perform the specified task. Finding this optimal trajectory is a challenging issue since it depends on both having an accurate mathematical model of the UAV, and designing the desired trajectory based on this dynamical model. %The former is usually tackled by estimating the nonlinear model with a locally linear model around the desired states, while the latter is mostly relaxed by defining the desired path with a polynomial or spline curves, and then designing a controller to follow it. However, there still remains some ambiguities about the accuracy and performance of the result. In response to these concerns, statistical modeling approaches have proved to be interesting alternatives to classical control and planning approaches for modeling of the intrinsic dynamics of the robot's body when it cannot be well estimated. Furthermore, within the framework of programming by demonstration (PbD), statistical methods have been proposed as means to learn a generic trajectory across sets of demonstration. In this work, we implemented an algorithm based on PbD to estimate both dynamics of the UAV and to infer the underlying maneuver. The main advantage of the proposed algorithm over our previous works lies in the fact that with this modeling approach, the effect of robot's dynamics is taken into account.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (32)

Related publications (169)

Related concepts (43)

Digital Signal Processing [retired]

The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a

Digital Signal Processing

Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo

Thymio: un robot pour se former à l'informatique

On propose dans ce MOOC de se former à et avec Thymio :
apprendre à programmer le robot Thymio et ce faisant, s’initier
à l'informatique et la robotique.

Statistical hypothesis testing

A statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis. Hypothesis testing allows us to make probabilistic statements about population parameters. While hypothesis testing was popularized early in the 20th century, early forms were used in the 1700s. The first use is credited to John Arbuthnot (1710), followed by Pierre-Simon Laplace (1770s), in analyzing the human sex ratio at birth; see .

Statistical significance

In statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; and the p-value of a result, , is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. The result is statistically significant, by the standards of the study, when .

Signal

In signal processing, a signal is a function that conveys information about a phenomenon. Any quantity that can vary over space or time can be used as a signal to share messages between observers. The IEEE Transactions on Signal Processing includes audio, video, speech, , sonar, and radar as examples of signals. A signal may also be defined as observable change in a quantity over space or time (a time series), even if it does not carry information.

Robots outside of the fenced factories have to deal with continuously changing environment, this requires fast and flexible modes of control. Planning methods or complex learning models can find optimal paths in complex surroundings, but they are computati ...

Denis Gillet, Juan Carlos Farah, Adrian Christian Holzer, Abdessalam Ouaazki

As computational thinking (CT) becomes increasingly acknowledged as an important skill in education, self-directed learning (SDL) emerges as a key strategy for developing this capability. The advent of generative AI (GenAI) conversational agents has disrup ...

2024, ,

We address multi-robot safe mission planning in uncertain dynamic environments. This problem arises in several applications including safety-critical exploration, surveillance, and emergency rescue missions. Computation of a multi-robot optimal control pol ...

2023