Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Two related methods for inverting line-integrated measurements are presented in this research paper in the context of the recent deuterium-tritium experiments in the JET tokamak. Unlike traditional methods of tomography, these methods rely on making use of ...
Probability distributions are key components of many learning from demonstration (LfD) approaches, with the spaces chosen to represent tasks playing a central role. Although the robot configuration is defined by its joint angles, end-effector poses are oft ...
The maximal achievable advantage of a (computationally unbounded) distinguisher to determine whether a source Z is distributed according to distribution P0 or P1, when given access to one sample of Z, is characterized by the statistical distance ...
Under resource constraints, LLMs are usually fine- tuned with additional knowledge using Parameter Efficient Fine-Tuning (PEFT), using Low-Rank Adaptation (LoRA) modules. In fact, LoRA injects a new set of small trainable matrices to adapt an LLM to a new ...
Wasserstein distances are metrics on probability distributions inspired by the problem of optimal mass transportation. Roughly speaking, they measure the minimal effort required to reconfigure the probability mass of one distribution in order to recover th ...
Under resource constraints, LLMs are usually fine-tuned with additional knowledge using Parameter Efficient Fine-Tuning (PEFT), using Low-Rank Adaptation (LoRA) modules. In fact, LoRA injects a new set of small trainable matrices to adapt an LLM to a new t ...
Efficient sampling of complex high-dimensional probability distributions is a central task in computational science. Machine learning methods like autoregressive neural networks, used with Markov chain Monte Carlo sampling, provide good approximations to s ...
Stochastic optimization is a popular modeling paradigm for decision-making under uncertainty and has a wide spectrum of applications in management science, economics and engineering. However, the stochastic optimization models one faces in practice are int ...
In this paper, we present the first general solution to the automatic reconfiguration problem of timed discrete-event systems. We extend the recursive forcible backtracking approach which had been already solved the automatic reconfiguration problem of unt ...
he concept of ranked order probability distribution unveils natural probabilistic interpretations for the kink waves (and hence the solitons) solving higher order dispersive Burgers’ type PDEs. Thanks to this underlying structure, it is possible to propose ...