Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The ability of saplings to tolerate browsing (i.e. the ability to persist with reduced biomass and to compensate for biomass loss) is influenced by the level of stress and their growth strategies. Ultimately, insight into species-specific responses of saplings to browsing, shade and competition from neighbours will help explain diversity, structure and function of grazed ecosystems such as the endangered wood-pasture systems. We measured the survival, whole-sapling biomass and compensatory growth responses of two coniferous (Picea abies and Abies alba) and two deciduous (Acer pseudoplatanus and Fagus sylvatica) tree species to simulated summer browsing (one single clipping event), shade (installation of a shade cloth) and neighbour removal (mowing surrounding vegetation to ground level) treatments and the interactions between them after two-growing seasons. For all species, there were interacting effects on growth of browsing and environmental condition (shade and neighbours). Simulated browsing resulted in relatively smaller growth losses when plants were growing slowly due to competitive conditions related to herbaceous neighbours. Although none of the clipped saplings could fully compensate for their biomass losses, the saplings were closer to compensation under high competitive conditions than under low competitive conditions. Survival of the clipped saplings remained relatively high and was only significantly reduced for Picea and Acer. Picea was least tolerant of competition and was the only species for which growth was not negatively affected by strong irradiance of a mountain pasture. Surprisingly, the tolerance of saplings to herbivory as browsing tolerance was enhanced under conditions that negatively affected sapling performance (i.e. survival and growth). Apparently, the relative impact of browsing at the early sapling stage is linked to tree life history characteristics such as competition and shade tolerance and will be lower in situations with intense competitive interactions and/or strong irradiance.
Charlotte Grossiord, Christoph Bachofen, Thibaut Michel Georges Juillard, Janisse Deluigi, Marco Conedera
, ,