Foundations of statisticsStatistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data, and is used to solve practical problems and draw conclusions. When analyzing data, the approaches used can lead to different conclusions on the same data. For example, weather forecasts often vary among different forecasting agencies that use different forecasting algorithms and techniques. Conclusions drawn from statistical analysis often involve uncertainty as they represent the probability of an event occurring.
Fisher's exact testFisher's exact test is a statistical significance test used in the analysis of contingency tables. Although in practice it is employed when sample sizes are small, it is valid for all sample sizes. It is named after its inventor, Ronald Fisher, and is one of a class of exact tests, so called because the significance of the deviation from a null hypothesis (e.g., p-value) can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, as with many statistical tests.
Autoregressive conditional heteroskedasticityIn econometrics, the autoregressive conditional heteroskedasticity (ARCH) model is a statistical model for time series data that describes the variance of the current error term or innovation as a function of the actual sizes of the previous time periods' error terms; often the variance is related to the squares of the previous innovations. The ARCH model is appropriate when the error variance in a time series follows an autoregressive (AR) model; if an autoregressive moving average (ARMA) model is assumed for the error variance, the model is a generalized autoregressive conditional heteroskedasticity (GARCH) model.