White noiseIn signal processing, white noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density. The term is used, with this or similar meanings, in many scientific and technical disciplines, including physics, acoustical engineering, telecommunications, and statistical forecasting. White noise refers to a statistical model for signals and signal sources, rather than to any specific signal.
Noise (signal processing)In signal processing, noise is a general term for unwanted (and, in general, unknown) modifications that a signal may suffer during capture, storage, transmission, processing, or conversion. Sometimes the word is also used to mean signals that are random (unpredictable) and carry no useful information; even if they are not interfering with other signals or may have been introduced intentionally, as in comfort noise. Noise reduction, the recovery of the original signal from the noise-corrupted one, is a very common goal in the design of signal processing systems, especially filters.
Compound Poisson processA compound Poisson process is a continuous-time stochastic process with jumps. The jumps arrive randomly according to a Poisson process and the size of the jumps is also random, with a specified probability distribution. To be precise, a compound Poisson process, parameterised by a rate and jump size distribution G, is a process given by where, is the counting variable of a Poisson process with rate , and are independent and identically distributed random variables, with distribution function G, which are also independent of When are non-negative integer-valued random variables, then this compound Poisson process is known as a stuttering Poisson process.
Linear canonical transformationIn Hamiltonian mechanics, the linear canonical transformation (LCT) is a family of integral transforms that generalizes many classical transforms. It has 4 parameters and 1 constraint, so it is a 3-dimensional family, and can be visualized as the action of the special linear group SL2(R) on the time–frequency plane (domain). As this defines the original function up to a sign, this translates into an action of its double cover on the original function space.
Shrinkage (statistics)In statistics, shrinkage is the reduction in the effects of sampling variation. In regression analysis, a fitted relationship appears to perform less well on a new data set than on the data set used for fitting. In particular the value of the coefficient of determination 'shrinks'. This idea is complementary to overfitting and, separately, to the standard adjustment made in the coefficient of determination to compensate for the subjunctive effects of further sampling, like controlling for the potential of new explanatory terms improving the model by chance: that is, the adjustment formula itself provides "shrinkage.
Flat (geometry)In geometry, a flat or Euclidean subspace is a subset of a Euclidean space that is itself a Euclidean space (of lower dimension). The flats in two-dimensional space are points and lines, and the flats in three-dimensional space are points, lines, and planes. In a n-dimensional space, there are flats of every dimension from 0 to n − 1; flats of dimension n − 1 are called hyperplanes. Flats are the affine subspaces of Euclidean spaces, which means that they are similar to linear subspaces, except that they need not pass through the origin.