Endocannabinoid systemThe endocannabinoid system (ECS) is a biological system composed of endocannabinoids, which are endogenous lipid-based retrograde neurotransmitters that bind to cannabinoid receptors (CBRs), and cannabinoid receptor proteins that are expressed throughout the vertebrate central nervous system (including the brain) and peripheral nervous system.
Gene expressionGene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, proteins or non-coding RNA, and ultimately affect a phenotype. These products are often proteins, but in non-protein-coding genes such as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA.
Neural codingNeural coding (or neural representation) is a neuroscience field concerned with characterising the hypothetical relationship between the stimulus and the individual or ensemble neuronal responses and the relationship among the electrical activity of the neurons in the ensemble. Based on the theory that sensory and other information is represented in the brain by networks of neurons, it is thought that neurons can encode both digital and analog information.
Neuronal ensembleA neuronal ensemble is a population of nervous system cells (or cultured neurons) involved in a particular neural computation. The concept of neuronal ensemble dates back to the work of Charles Sherrington who described the functioning of the CNS as the system of reflex arcs, each composed of interconnected excitatory and inhibitory neurons. In Sherrington's scheme, α-motoneurons are the final common path of a number of neural circuits of different complexity: motoneurons integrate a large number of inputs and send their final output to muscles.
Gene expression profilingIn the field of molecular biology, gene expression profiling is the measurement of the activity (the expression) of thousands of genes at once, to create a global picture of cellular function. These profiles can, for example, distinguish between cells that are actively dividing, or show how the cells react to a particular treatment. Many experiments of this sort measure an entire genome simultaneously, that is, every gene present in a particular cell. Several transcriptomics technologies can be used to generate the necessary data to analyse.
Neural oscillationNeural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons.
Regulation of gene expressionRegulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental stimuli, or adapt to new food sources. Virtually any step of gene expression can be modulated, from transcriptional initiation, to RNA processing, and to the post-translational modification of a protein.
HuntingtinHuntingtin (Htt) is the protein coded for in humans by the HTT gene, also known as the IT15 ("interesting transcript 15") gene. Mutated HTT is the cause of Huntington's disease (HD), and has been investigated for this role and also for its involvement in long-term memory storage. It is variable in its structure, as the many polymorphisms of the gene can lead to variable numbers of glutamine residues present in the protein. In its wild-type (normal) form, the polymorphic locus contains 6-35 glutamine residues.
Wnt signaling pathwayThe Wnt signaling pathways are a group of signal transduction pathways which begin with proteins that pass signals into a cell through cell surface receptors. The name Wnt is a portmanteau created from the names Wingless and Int-1. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine). They are highly evolutionarily conserved in animals, which means they are similar across animal species from fruit flies to humans.
Cannabinoid hyperemesis syndromeCannabinoid hyperemesis syndrome (CHS) is recurrent nausea, vomiting, and cramping abdominal pain that can occur due to prolonged, high-dose cannabis use. These symptoms may be relieved temporarily by taking a hot shower or bath. Complications may include kidney failure and electrolyte problems Weekly cannabis use is generally required for the syndrome to occur; synthetic cannabinoids can also cause CHS. The underlying mechanism is unclear, with several possibilities proposed.