Summary
A neuronal ensemble is a population of nervous system cells (or cultured neurons) involved in a particular neural computation. The concept of neuronal ensemble dates back to the work of Charles Sherrington who described the functioning of the CNS as the system of reflex arcs, each composed of interconnected excitatory and inhibitory neurons. In Sherrington's scheme, α-motoneurons are the final common path of a number of neural circuits of different complexity: motoneurons integrate a large number of inputs and send their final output to muscles. Donald Hebb theoretically developed the concept of neuronal ensemble in his famous book "The Organization of Behavior" (1949). He defined "cell assembly" as "a diffuse structure comprising cells in the cortex and diencephalon, capable of acting briefly as a closed system, delivering facilitation to other such systems". Hebb suggested that, depending on functional requirements, individual brain cells could participate in different cell assemblies and be involved in multiple computations. In the 1980s, Apostolos Georgopoulos and his colleagues Ron Kettner, Andrew Schwartz, and Kenneth Johnson formulated a population vector hypothesis to explain how populations of motor cortex neurons encode movement direction. This hypothesis was based on the observation that individual neurons tended to discharge more for movements in particular directions, the so-called preferred directions for individual neurons. In the population vector model, individual neurons 'vote' for their preferred directions using their firing rate. The final vote is calculated by vectorial summation of individual preferred directions weighted by neuronal rates. This model proved to be successful in description of motor-cortex encoding of reach direction, and it was also capable to predict new effects. For example, Georgopoulos's population vector accurately described mental rotations made by the monkeys that were trained to translate locations of visual stimuli into spatially shifted locations of reach targets.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.