The role of ion and electron electrostatic turbulence in characterizing stationary particle transport in the core of tokamak plasmas
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The overall performance of a tokamak strongly depends on phenomena that take place in a thin region between the main plasma and the vessel wall, which is denoted as tokamak boundary. In fact, the formation of transport barriers in this region can significa ...
Multiscale phenomena are involved in countless problems in fluid mechanics. Coating flows are known to exhibit a broad variety of patterns, such as wine tears in a glass and dripping of fresh paint applied on a wall. Coating flows are typically modeled und ...
In solid mechanics, linear structures often exhibit (local) nonlinear behavior when close to failure. For instance, the elastic deformation of a structure becomes plastic after being deformed beyond recovery. To properly assess such problems in a real-life ...
The finite element method is a well-established method for the numerical solution of partial differential equations (PDEs), both linear and nonlinear. However, the repeated re -assemblage of finite element matrices for nonlinear PDEs is frequently pointed ...
Matrix (or operator) recovery from linear measurements is a well-studied problem. However, there are situations where only bilinear or quadratic measurements are available. A bilinear or quadratic problem can easily be transformed into a linear one, but it ...
Leading-edge cavitation is responsible of the generation of transient cavities, usually made of clouds of bubbles. These transient cavities travel downstream to high-pressure regions and collapse violently, leading to noise and vibration as well as erosion ...
Performance of tokamak fusion plasmas is heavily linked to the radial heat and particle transport,
which is known to be mainly produced by turbulence driven by micro-instabilities. Understanding such
processes is thus of key importance for the design and o ...
Macroscopic instabilities and their unfavourable effects on plasma confinement pose a central challenge for the development of reactor relevant tokamak scenarios. Some promising operation scenarios feature extended regions of low magnetic shear. These are ...
Understanding the turbulent dynamics of the plasma in the periphery of fusion devices - the region extending from the external part of the closed flux surface region to the scrape-off layer - is of crucial importance on the way to fusion energy. Indeed, th ...
The results of flux-driven, two-fluid simulations in single-null configurations are used to investigate the processes determining the turbulent transport in the tokamak edge. Three turbulent transport regimes are identified: (i) a developed transport regim ...