Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
Thermonuclear controlled fusion is a promising answer to the current energy and climate issues, providing a safe carbon-free source of energy which is virtually inexhaustible. In magnetic confinement thermonuclear fusion based on tokamak reactors, hydrogen ...
Flux-tube (local) gyrokinetic codes are widely used to simulate drift-wave turbulence in magnetic confinement devices. While a large number of studies show that flux-tube codes provide an excellent approximation for turbulent transport in medium-large devi ...
The understanding of the plasma dynamics in the scrape-off layer (SOL) of tokamaks is of crucial importance as we approach the ITER era. In this region, particles and heat coming from the core, through turbulent transport, flow along the magnetic field lin ...
Turbulence in the edge plasma of a tokamak is a key actor in the determination of the confinement properties. The divertor configuration seems to be beneficial for confinement, suggesting an effect on turbulence of the particular magnetic geometry introduc ...
In future tokamaks like ITER with tungsten walls, it is imperative to control tungsten accumulation in the core of operational plasmas, especially since tungsten accumulation can lead to radiative collapse and disruption. We investigate the behaviour of tu ...
The fast-ion phase-space coverage of the ASDEX Upgrade Fast-Ion Loss Detectors (FILD) has been estimated and the results are presented here. To that end, a numerical tool has been developed to determine particle orbits that can be accepted by each detector ...
Controlled thermonuclear fusion is the main goal of plasma physics. At the Swiss Plasma Center, the Tokamak `a Configuration Variable (TCV) constitutes the main experiment on fusion research, where high temperature plasmas are confined by means of magneti ...
The potential of nuclear fusion to provide a practically inexhaustible source of energy has motivated scientists to work towards developing nuclear fusion tokamak power plants. Stable operation of a tokamak at high performance requires simultaneous treatme ...
Controlled nuclear fusion is the most promising candidate for being an inexhaustible, clean and intrinsically safe energy source. In the tokamak fusion reactor concept, a high temperature plasma is confined by magnetic fields. Turbulence diffuses the confi ...