Decision theoryDecision theory (or the theory of choice; not to be confused with choice theory) is a branch of applied probability theory and analytic philosophy concerned with the theory of making decisions based on assigning probabilities to various factors and assigning numerical consequences to the outcome. There are three branches of decision theory: Normative decision theory: Concerned with the identification of optimal decisions, where optimality is often determined by considering an ideal decision-maker who is able to calculate with perfect accuracy and is in some sense fully rational.
Genetic codeThe genetic code is the set of rules used by living cells to translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links proteinogenic amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA) molecules to carry amino acids and to read the mRNA three nucleotides at a time. The genetic code is highly similar among all organisms and can be expressed in a simple table with 64 entries.
Rice's theoremIn computability theory, Rice's theorem states that all non-trivial semantic properties of programs are undecidable. A semantic property is one about the program's behavior (for instance, does the program terminate for all inputs), unlike a syntactic property (for instance, does the program contain an if-then-else statement). A property is non-trivial if it is neither true for every partial computable function, nor false for every partial computable function.
Upper middle classIn sociology, the upper middle class is the social group constituted by higher status members of the middle class. This is in contrast to the term lower middle class, which is used for the group at the opposite end of the middle-class stratum, and to the broader term middle class. There is considerable debate as to how the upper middle class might be defined. According to sociologist Max Weber, the upper middle class consists of well-educated professionals with postgraduate degrees and comfortable incomes.
Data structure alignmentData structure alignment is the way data is arranged and accessed in computer memory. It consists of three separate but related issues: data alignment, data structure padding, and packing. The CPU in modern computer hardware performs reads and writes to memory most efficiently when the data is naturally aligned, which generally means that the data's memory address is a multiple of the data size. For instance, in a 32-bit architecture, the data may be aligned if the data is stored in four consecutive bytes and the first byte lies on a 4-byte boundary.
Comparison of audio synthesis environmentsSoftware audio synthesis environments typically consist of an audio programming language (which may be graphical) and a user environment to design/run the language in. Although many of these environments are comparable in their abilities to produce high-quality audio, their differences and specialties are what draw users to a particular platform. This article compares noteworthy audio synthesis environments, and enumerates basic issues associated with their use.
Well-quasi-orderingIn mathematics, specifically order theory, a well-quasi-ordering or wqo on a set is a quasi-ordering of for which every infinite sequence of elements from contains an increasing pair with Well-founded induction can be used on any set with a well-founded relation, thus one is interested in when a quasi-order is well-founded. (Here, by abuse of terminology, a quasiorder is said to be well-founded if the corresponding strict order is a well-founded relation.