Data structure alignment is the way data is arranged and accessed in computer memory. It consists of three separate but related issues: data alignment, data structure padding, and packing. The CPU in modern computer hardware performs reads and writes to memory most efficiently when the data is naturally aligned, which generally means that the data's memory address is a multiple of the data size. For instance, in a 32-bit architecture, the data may be aligned if the data is stored in four consecutive bytes and the first byte lies on a 4-byte boundary. Data alignment is the aligning of elements according to their natural alignment. To ensure natural alignment, it may be necessary to insert some padding between structure elements or after the last element of a structure. For example, on a 32-bit machine, a data structure containing a 16-bit value followed by a 32-bit value could have 16 bits of padding between the 16-bit value and the 32-bit value to align the 32-bit value on a 32-bit boundary. Alternatively, one can pack the structure, omitting the padding, which may lead to slower access, but uses three quarters as much memory. Although data structure alignment is a fundamental issue for all modern computers, many computer languages and computer language implementations handle data alignment automatically. Fortran, Ada, PL/I, Pascal, certain C and C++ implementations, D, Rust, C#, and assembly language allow at least partial control of data structure padding, which may be useful in certain special circumstances. A memory address a is said to be n-byte aligned when a is a multiple of n (where n is a power of 2). In this context, a byte is the smallest unit of memory access, i.e. each memory address specifies a different byte. An n-byte aligned address would have a minimum of log2(n) least-significant zeros when expressed in binary. The alternate wording b-bit aligned designates a b/8 byte aligned address (ex. 64-bit aligned is 8 bytes aligned). A memory access is said to be aligned when the data being accessed is n bytes long and the datum address is n-byte aligned.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.