Arithmetic functionIn number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.
SequenceIn mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position.
Multiplicative functionIn number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and whenever a and b are coprime. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.
Carmichael functionIn number theory, a branch of mathematics, the Carmichael function λ(n) of a positive integer n is the smallest positive integer m such that holds for every integer a coprime to n. In algebraic terms, λ(n) is the exponent of the multiplicative group of integers modulo n. The Carmichael function is named after the American mathematician Robert Carmichael who defined it in 1910. It is also known as Carmichael's λ function, the reduced totient function, and the least universal exponent function.
Exotic sphereIn an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one (hence the name "exotic"). The first exotic spheres were constructed by in dimension as -bundles over . He showed that there are at least 7 differentiable structures on the 7-sphere.
Unit sphereIn mathematics, a unit sphere is simply a sphere of radius one around a given center. More generally, it is the set of points of distance 1 from a fixed central point, where different norms can be used as general notions of "distance". A unit ball is the closed set of points of distance less than or equal to 1 from a fixed central point. Usually the center is at the origin of the space, so one speaks of "the unit ball" or "the unit sphere". Special cases are the unit circle and the unit disk.
Alexander horned sphereThe Alexander horned sphere is a pathological object in topology discovered by . The Alexander horned sphere is the particular embedding of a sphere in 3-dimensional Euclidean space obtained by the following construction, starting with a standard torus: Remove a radial slice of the torus. Connect a standard punctured torus to each side of the cut, interlinked with the torus on the other side. Repeat steps 1–2 on the two tori just added ad infinitum.
Earth radiusEarth radius (denoted as R🜨 or ) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid, the radius ranges from a maximum of nearly (equatorial radius, denoted a) to a minimum of nearly (polar radius, denoted b). A nominal Earth radius is sometimes used as a unit of measurement in astronomy and geophysics, which is recommended by the International Astronomical Union to be the equatorial value. A globally-average value is usually considered to be with a 0.
Disjoint union (topology)In general topology and related areas of mathematics, the disjoint union (also called the direct sum, free union, free sum, topological sum, or coproduct) of a family of topological spaces is a space formed by equipping the disjoint union of the underlying sets with a natural topology called the disjoint union topology. Roughly speaking, in the disjoint union the given spaces are considered as part of a single new space where each looks as it would alone and they are isolated from each other.
Floer homologyIn mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold.