In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one (hence the name "exotic").
The first exotic spheres were constructed by in dimension as -bundles over . He showed that there are at least 7 differentiable structures on the 7-sphere. In any dimension showed that the diffeomorphism classes of oriented exotic spheres form the non-trivial elements of an abelian monoid under connected sum, which is a finite abelian group if the dimension is not 4. The classification of exotic spheres by showed that the oriented exotic 7-spheres are the non-trivial elements of a cyclic group of order 28 under the operation of connected sum.
Specifically, this means that the elements of this group (n ≠ 4) are the equivalence classes of smooth structures on Sn, where two structures are considered equivalent if there is an orientation preserving diffeomorphism carrying one structure onto the other. The group operation is defined by [x] + [y] = [x + y],
where x and y are arbitrary representatives of their equivalence classes, and "x + y" denotes the smooth structure on the smooth Sn that is the connected sum of x and y. It is necessary to show that such a definition does not depend on the choices made; indeed this can be shown.
The unit n-sphere, , is the set of all (n+1)-tuples of real numbers, such that the sum . For instance, is a circle, while is the surface of an ordinary ball of radius one in 3 dimensions. Topologists consider a space, X, to be an n-sphere if there is a homeomorphism between them, i.e. every point in X may be assigned to exactly one point in the unit n-sphere in a bicontinuous (i.e. continuous and invertible with continuous inverse) manner. For example, a point x on an n-sphere of radius r can be matched with a point on the unit n-sphere by adjusting its distance from the origin by .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.
In geometric topology and differential topology, an (n + 1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism (the h stands for homotopy equivalence) if the inclusion maps are homotopy equivalences. The h-cobordism theorem gives sufficient conditions for an h-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder M × [0, 1]. Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds.
In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
This is an introductory course to the concentration of measure phenomenon - random functions that depend on many random variables tend to be often close to constant functions.
This thesis is a study of the global well-posedness of the Cauchy problems for half-wave maps from the Minkowski space of dimension n+1 to the 2-dimensional sphere and the hyperbolic plane. The work is mainly based on the results from Krieger-Sire 17' in ...
Graph sparsification has been studied extensively over the past two decades, culminating in spectral sparsifiers of optimal size (up to constant factors). Spectral hypergraph sparsification is a natural analogue of this problem, for which optimal bounds on ...
Epsilon-near-zero (ENZ) materialshave attracted great interestdue to their exotic linear and nonlinear responses, which makes itsignificant to tune ENZ wavelengths for wavelength-dependent applications.However, studies to achieve tunability in a wide spect ...