**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Exotic sphere

Summary

In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one (hence the name "exotic").
The first exotic spheres were constructed by in dimension as -bundles over . He showed that there are at least 7 differentiable structures on the 7-sphere. In any dimension showed that the diffeomorphism classes of oriented exotic spheres form the non-trivial elements of an abelian monoid under connected sum, which is a finite abelian group if the dimension is not 4. The classification of exotic spheres by showed that the oriented exotic 7-spheres are the non-trivial elements of a cyclic group of order 28 under the operation of connected sum.
Specifically, this means that the elements of this group (n ≠ 4) are the equivalence classes of smooth structures on Sn, where two structures are considered equivalent if there is an orientation preserving diffeomorphism carrying one structure onto the other. The group operation is defined by [x] + [y] = [x + y],
where x and y are arbitrary representatives of their equivalence classes, and "x + y" denotes the smooth structure on the smooth Sn that is the connected sum of x and y. It is necessary to show that such a definition does not depend on the choices made; indeed this can be shown.
The unit n-sphere, , is the set of all (n+1)-tuples of real numbers, such that the sum . For instance, is a circle, while is the surface of an ordinary ball of radius one in 3 dimensions. Topologists consider a space, X, to be an n-sphere if there is a homeomorphism between them, i.e. every point in X may be assigned to exactly one point in the unit n-sphere in a bicontinuous (i.e. continuous and invertible with continuous inverse) manner. For example, a point x on an n-sphere of radius r can be matched with a point on the unit n-sphere by adjusting its distance from the origin by .

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (21)

Related courses (18)

Related lectures (164)

Related MOOCs (1)

Exotic sphere

In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one (hence the name "exotic"). The first exotic spheres were constructed by in dimension as -bundles over . He showed that there are at least 7 differentiable structures on the 7-sphere.

Differentiable manifold

In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.

H-cobordism

In geometric topology and differential topology, an (n + 1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism (the h stands for homotopy equivalence) if the inclusion maps are homotopy equivalences. The h-cobordism theorem gives sufficient conditions for an h-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder M × [0, 1]. Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds.

MATH-201: Analysis III

Calcul différentiel et intégral: Eléments d'analyse vectorielle, intégration par partie, intégrale curviligne, intégrale de surface, théorèmes de Stokes, Green, Gauss, fonctions harmoniques;
Eléments

MATH-213: Differential geometry

Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le plan et l'espace euclidien.

MATH-126: Geometry for architects II

Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.

Bird's-eye view and aims

Covers optimization on manifolds, smoothness, tools needed for optimization, and advanced algorithms using Hessians and Riemannian connections.

Closed Surfaces and Integrals

Explains closed surfaces like spheres, cubes, and cones without covers, and their traversal and removal of edges.

Sphere Geometry: Properties and Projections

Explores sphere properties, projections, and symmetry, including apparent contours and missing projections of points.

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).