Functional shape of the spike-triggered adaptation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Minimal nonlinear dynamic neuron models of the generic bifurcation type may provide the middle way between the detailed models favored by experimentalists and the simplified threshold and rate model of computational neuroscientists. This thesis investigate ...
The coordinated, collective spiking activity of neuronal populations encodes and processes information. One approach towards understanding such population based computation is to fit statistical models to simultaneously recorded spike trains and use these ...
The ability of simple mathematical models to predict the activity of single neurons is important for computational neuroscience. In neurons, stimulated by a time-dependent current or conductance, we want to predict precisely the timing of spikes and the su ...
Predicting activity of single neuron is an important part of the computational neuroscience and a great challenge. Several mathematical models exist, from the simple (one compartment and few parameters, like the SRM or the IF-type models), to the more comp ...
The growing number of large-scale neuronal network models has created a need for standards and guidelines to ease model sharing and facilitate the replication of results across different simulators. To foster community efforts towards such standards, the I ...
Neuronal response properties are typically probed by intracellular measurements of current-voltage (I-V) relationships during application of current or voltage steps. Here we demonstrate the measurement of a novel I-V curve measured while the neuron exhibi ...
Statistical models of neural activity are at the core of the field of modern computational neuroscience. The activity of single neurons has been modeled to successfully explain dependencies of neural dynamics to its own spiking history, to external stimuli ...
How do neurons dynamically encode and treat information? Each neuron communicates with its distinctive language made of long silences intermitted by occasional spikes. The spikes are prompted by the pooled effect of a population of pre-synaptic neurons. To ...
In the present paper we propose a novel method for the identification and modeling of neural networks using extracellular spike recordings. We create a deterministic model of the effective network, whose dynamic behavior fits experimental data. The network ...
This work investigates the capacity of Integrate-and-Fire-type (I&F-type) models to quantitatively predict spike trains of real neurons in various laboratory and in vivo-like settings. A step-by-step methodology is developed to build an equivalent effectiv ...