Signal propagation delayPropagation delay is the time duration taken for a signal to reach its destination. It can relate to networking, electronics or physics. In computer networks, propagation delay is the amount of time it takes for the head of the signal to travel from the sender to the receiver. It can be computed as the ratio between the link length and the propagation speed over the specific medium. Propagation delay is equal to d / s where d is the distance and s is the wave propagation speed. In wireless communication, s=c, i.
Network throughputNetwork throughput (or just throughput, when in context) refers to the rate of message delivery over a communication channel, such as Ethernet or packet radio, in a communication network. The data that these messages contain may be delivered over physical or logical links, or through network nodes. Throughput is usually measured in bits per second (bit/s or bps), and sometimes in data packets per second (p/s or pps) or data packets per time slot. The system throughput or aggregate throughput is the sum of the data rates that are delivered to all terminals in a network.
Network scienceNetwork science is an academic field which studies complex networks such as telecommunication networks, computer networks, biological networks, cognitive and semantic networks, and social networks, considering distinct elements or actors represented by nodes (or vertices) and the connections between the elements or actors as links (or edges). The field draws on theories and methods including graph theory from mathematics, statistical mechanics from physics, data mining and information visualization from computer science, inferential modeling from statistics, and social structure from sociology.
Out-of-order deliveryIn computer networking, out-of-order delivery is the delivery of data packets in a different order from which they were sent. Out-of-order delivery can be caused by packets following multiple paths through a network, by lower-layer retransmission procedures (such as automatic repeat request), or via parallel processing paths within network equipment that are not designed to ensure that packet ordering is preserved. One of the functions of TCP is to prevent the out-of-order delivery of data, either by reassembling packets in order or requesting retransmission of out-of-order packets.
Round-trip delayIn telecommunications, round-trip delay (RTD) or round-trip time (RTT) is the amount of time it takes for a signal to be sent plus the amount of time it takes for acknowledgement of that signal having been received. This time delay includes propagation times for the paths between the two communication endpoints. In the context of computer networks, the signal is typically a data packet. RTT is also known as ping time, and can be determined with the ping command.
Packet radioIn digital radio, packet radio is the application of packet switching techniques to digital radio communications. Packet radio uses a packet switching protocol as opposed to circuit switching or message switching protocols to transmit digital data via a radio communication link. Packet radio is frequently used by amateur radio operators. The AX.25 (Amateur X.25) protocol was derived from the X.25 data link layer protocol and adapted for amateur radio use. Every AX.
Distributed hash tableA distributed hash table (DHT) is a distributed system that provides a lookup service similar to a hash table. Key–value pairs are stored in a DHT, and any participating node can efficiently retrieve the value associated with a given key. The main advantage of a DHT is that nodes can be added or removed with minimum work around re-distributing keys. Keys are unique identifiers which map to particular values, which in turn can be anything from addresses, to documents, to arbitrary data.
Wake-on-LANWake-on-LAN (WoL or WOL) is an Ethernet or Token Ring computer networking standard that allows a computer to be turned on or awakened from sleep mode by a network message. Equivalent terms include wake on WAN, remote wake-up, power on by LAN, power up by LAN, resume by LAN, resume on LAN and wake up on LAN. If the computer being awakened is communicating via Wi-Fi, a supplementary standard called Wake on Wireless LAN (WoWLAN) must be employed. The message is usually sent to the target computer by a program executed on a device connected to the same local area network.
Best-effort deliveryBest-effort delivery describes a network service in which the network does not provide any guarantee that data is delivered or that delivery meets any quality of service. In a best-effort network, all users obtain best-effort service. Under best-effort, network performance characteristics such as network delay and packet loss depend on the current network traffic load, and the network hardware capacity. When network load increases, this can lead to packet loss, retransmission, packet delay variation, and further network delay, or even timeout and session disconnect.
Measuring network throughputThroughput of a network can be measured using various tools available on different platforms. This page explains the theory behind what these tools set out to measure and the issues regarding these measurements. Reasons for measuring throughput in networks. People are often concerned about measuring the maximum data throughput in bits per second of a communications link or network access. A typical method of performing a measurement is to transfer a 'large' file from one system to another system and measure the time required to complete the transfer or copy of the file.