Bayes estimatorIn estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .
Normal distributionIn statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution (and also its median and mode), while the parameter is its standard deviation. The variance of the distribution is . A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
Dirichlet distributionIn probability and statistics, the Dirichlet distribution (after Peter Gustav Lejeune Dirichlet), often denoted , is a family of continuous multivariate probability distributions parameterized by a vector of positive reals. It is a multivariate generalization of the beta distribution, hence its alternative name of multivariate beta distribution (MBD). Dirichlet distributions are commonly used as prior distributions in Bayesian statistics, and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution.
Posterior predictive distributionIn Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. Given a set of N i.i.d. observations , a new value will be drawn from a distribution that depends on a parameter , where is the parameter space. It may seem tempting to plug in a single best estimate for , but this ignores uncertainty about , and because a source of uncertainty is ignored, the predictive distribution will be too narrow.
Inverse-gamma distributionIn probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution. Perhaps the chief use of the inverse gamma distribution is in Bayesian statistics, where the distribution arises as the marginal posterior distribution for the unknown variance of a normal distribution, if an uninformative prior is used, and as an analytically tractable conjugate prior, if an informative prior is required.
Fisher informationIn mathematical statistics, the Fisher information (sometimes simply called information) is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X. Formally, it is the variance of the score, or the expected value of the observed information. The role of the Fisher information in the asymptotic theory of maximum-likelihood estimation was emphasized by the statistician Ronald Fisher (following some initial results by Francis Ysidro Edgeworth).
Normal-gamma distributionIn probability theory and statistics, the normal-gamma distribution (or Gaussian-gamma distribution) is a bivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and precision. For a pair of random variables, (X,T), suppose that the conditional distribution of X given T is given by meaning that the conditional distribution is a normal distribution with mean and precision — equivalently, with variance Suppose also that the marginal distribution of T is given by where this means that T has a gamma distribution.
Nuisance parameterIn statistics, a nuisance parameter is any parameter which is unspecified but which must be accounted for in the hypothesis testing of the parameters which are of interest. The classic example of a nuisance parameter comes from the normal distribution, a member of the location–scale family. For at least one normal distribution, the variance(s), σ2 is often not specified or known, but one desires to hypothesis test on the mean(s).
Exponential familyIn probability and statistics, an exponential family is a parametric set of probability distributions of a certain form, specified below. This special form is chosen for mathematical convenience, including the enabling of the user to calculate expectations, covariances using differentiation based on some useful algebraic properties, as well as for generality, as exponential families are in a sense very natural sets of distributions to consider. The term exponential class is sometimes used in place of "exponential family", or the older term Koopman–Darmois family.
EquationIn mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation. Solving an equation containing variables consists of determining which values of the variables make the equality true.