Stream processingIn computer science, stream processing (also known as event stream processing, data stream processing, or distributed stream processing) is a programming paradigm which views streams, or sequences of events in time, as the central input and output objects of computation. Stream processing encompasses dataflow programming, reactive programming, and distributed data processing. Stream processing systems aim to expose parallel processing for data streams and rely on streaming algorithms for efficient implementation.
Logic programmingLogic programming is a programming paradigm which is largely based on formal logic. Any program written in a logic programming language is a set of sentences in logical form, expressing facts and rules about some problem domain. Major logic programming language families include Prolog, answer set programming (ASP) and Datalog. In all of these languages, rules are written in the form of clauses: H :- B1, ..., Bn. and are read declaratively as logical implications: H if B1 and ... and Bn. H is called the head of the rule and B1, .
Programming paradigmProgramming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms. Some paradigms are concerned mainly with implications for the execution model of the language, such as allowing side effects, or whether the sequence of operations is defined by the execution model. Other paradigms are concerned mainly with the way that code is organized, such as grouping a code into units along with the state that is modified by the code.
Parallel computingParallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.
Abelian varietyIn mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined over that field.
Parallel programming modelIn computing, a parallel programming model is an abstraction of parallel computer architecture, with which it is convenient to express algorithms and their composition in programs. The value of a programming model can be judged on its generality: how well a range of different problems can be expressed for a variety of different architectures, and its performance: how efficiently the compiled programs can execute. The implementation of a parallel programming model can take the form of a library invoked from a sequential language, as an extension to an existing language, or as an entirely new language.
Algebraic varietyAlgebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly.
Projective varietyIn algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .
Chow varietyIn mathematics, particularly in the field of algebraic geometry, a Chow variety is an algebraic variety whose points correspond to effective algebraic cycles of fixed dimension and degree on a given projective space. More precisely, the Chow variety is the fine moduli variety parametrizing all effective algebraic cycles of dimension and degree in . The Chow variety may be constructed via a Chow embedding into a sufficiently large projective space.
Language processing in the brainIn psycholinguistics, language processing refers to the way humans use words to communicate ideas and feelings, and how such communications are processed and understood. Language processing is considered to be a uniquely human ability that is not produced with the same grammatical understanding or systematicity in even human's closest primate relatives. Throughout the 20th century the dominant model for language processing in the brain was the Geschwind-Lichteim-Wernicke model, which is based primarily on the analysis of brain-damaged patients.