Fracture and Fatigue of Adhesively-Bonded Fiber-Reinforced Polymer Structural Joints
Related publications (315)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Modeling the 3D internal crack under compression entails complex fracture mechanics (mode I-II-III fracture), resulting in substantial computational costs and challenges in characterizing fracture morphology characterization for Phase Field Method (PFM) si ...
Fiber-polymer composites consist of a polymer matrix and reinforcing fibers made of various materials. These composites exhibit exceptional properties, such as a high strength-to-weight ratio and excellent corrosion resistance, which has led to their incre ...
Existing standards for delamination tests on composite materials typically employ one-dimensional (1D) beam specimens. However, such specimens may not represent real delamination scenarios in composite structures, where cracks tend to propagate in two dime ...
Ultra-high performance fiber reinforced cementitious composite (UHPFRC) is a modern class of cementitious building materials. Because of its superior mechanical properties and durability, it is increasingly used globally to rehabilitate, strengthen and mod ...
Delamination in real composite structures, which generally tends to grow in two-dimensions, sometimes cannot be appropriately represented by the widely accepted test methods where one-dimensional (1D) beam specimens are typically employed. In order to comp ...
This data package supports the publication 'Complexity of crack front geometry enhances toughness of brittle solids' by Xinyue Wei, Chenzhuo Li, Cían McCarthy, and John M. Kolinski Nature physics (2024) - https://doi.org/10.1038/s41567-024-02435-x DOI: 1 ...
Estimating the stress of reinforcing bars and its variations in service conditions can be useful to determine the reserve capacity of structures or to assess the risk of fatigue in the reinforcement. This paper investigates the use crack width measurements ...
Every engineering calculation is an approximation of reality, with inevitable uncertainties involved. This fact implies that a reliability verification accounting for the uncertainties is a necessary step in the design and assessment of structures. Nowaday ...
Understanding how things break and slide is of paramount importance to describe the dynamics of a broad range of physical systems. This includes day-to-day problems such as the breaking of a glass of wine or the sliding of skis on snow, but also engineerin ...
EPFL2023
, ,
When brittle hydrogels fail, several mechanisms conspire to alter the state of stress near the tip of a crack, and it is challenging to identify which mechanism is dominant. In the fracture of brittle solids, a sufficient far-field stress results in the co ...