**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# H∞ Controller Design for Spectral MIMO Models by Convex Optimization

Abstract

A new method for robust ﬁxed-order H∞ controller design by convex optimization for multivariable systems is investigated. Linear Time-Invariant Multi-Input Multi- Output (LTI-MIMO) systems represented by a set of complex values in the frequency domain are considered. It is shown that the Generalized Nyquist Stability criterion can be approximated by a set of convex constraints with respect to the parameters of a multivariable linearly parameterized controller in the Nyquist diagram. The diagonal elements of the controller are tuned to satisfy the desired performances, while simultaneously, the oﬀ-diagonal elements are designed to decouple the system. Multimodel uncertainty can be directly considered in the proposed approach by increasing the number of constraints. A simulation example illustrates the eﬀectiveness of the proposed approach. by a simulation example on an unstable system.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (3)

Nyquist stability criterion

In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker at Siemens in 1930 and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, is a graphical technique for determining the stability of a dynamical system.

Frequency domain

In mathematics, physics, electronics, control systems engineering, and statistics, the frequency domain refers to the analysis of mathematical functions or signals with respect to frequency, rather than time. Put simply, a time-domain graph shows how a signal changes over time, whereas a frequency-domain graph shows how the signal is distributed within different frequency bands over a range of frequencies. A frequency-domain representation consists of both the magnitude and the phase of a set of sinusoids (or other basis waveforms) at the frequency components of the signal.

Mathematical optimization

Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.