Two-Handed Gestures for Human-Computer Interaction
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Turning pass-through network architectures into iterative ones, which use their own output as input, is a well-known approach for boosting performance. In this paper, we argue that such architectures offer an additional benefit: The convergence rate of the ...
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
Hand gestures are one of the most natural and expressive way for humans to convey information, and thus hand gesture recognition has become a research hotspot in the human-machine interface (HMI) field. In particular, biological signals such as surface ele ...
Situated in the intersection of audiovisual archives, computational methods, and immersive interactions, this work probes the increasingly important accessibility issues from a two-fold approach. Firstly, the work proposes an ontological data model to hand ...
Object detection plays a critical role in various computer vision applications, encompassingdomains like autonomous vehicles, object tracking, and scene understanding. These applica-tions rely on detectors that generate bounding boxes around known object c ...
3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics. It is an ill-posed inverse problem, since-without additional prior assumpti ...
Language has shaped human evolution and led to the desire to endow machines with language abilities. Recent advancements in natural language processing enable us to achieve this breakthrough in human-machine interaction. However, introducing conversational ...
Despite the huge success of deep convolutional neural networks in face recognition (FR) tasks, current methods lack explainability for their predictions because of their ``black-box'' nature. In recent years, studies have been carried out to give an interp ...
Objective. Artificial vision has been and still is the subject of intense research. The ultimate goal is to help blind people in their daily life. Approaches to artificial vision, including visual prostheses and optogenetics, have strongly focused on resto ...
In the past years, deep convolutional neural networks have been pushing the frontier of face recognition (FR) techniques in both verification and identification scenarios. Despite the high accuracy, they are often criticized for lacking explainability. The ...