Publication

Multi-stream ASR: An Oracle Perspective

Related concepts (32)
Statistical classification
In statistics, classification is the problem of identifying which of a set of categories (sub-populations) an observation (or observations) belongs to. Examples are assigning a given email to the "spam" or "non-spam" class, and assigning a diagnosis to a given patient based on observed characteristics of the patient (sex, blood pressure, presence or absence of certain symptoms, etc.). Often, the individual observations are analyzed into a set of quantifiable properties, known variously as explanatory variables or features.
Ensemble learning
In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Deep learning
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Entropy (statistical thermodynamics)
The concept entropy was first developed by German physicist Rudolf Clausius in the mid-nineteenth century as a thermodynamic property that predicts that certain spontaneous processes are irreversible or impossible. In statistical mechanics, entropy is formulated as a statistical property using probability theory. The statistical entropy perspective was introduced in 1870 by Austrian physicist Ludwig Boltzmann, who established a new field of physics that provided the descriptive linkage between the macroscopic observation of nature and the microscopic view based on the rigorous treatment of large ensembles of microstates that constitute thermodynamic systems.
Kolmogorov complexity
In algorithmic information theory (a subfield of computer science and mathematics), the Kolmogorov complexity of an object, such as a piece of text, is the length of a shortest computer program (in a predetermined programming language) that produces the object as output. It is a measure of the computational resources needed to specify the object, and is also known as algorithmic complexity, Solomonoff–Kolmogorov–Chaitin complexity, program-size complexity, descriptive complexity, or algorithmic entropy.
Entropy coding
In information theory, an entropy coding (or entropy encoding) is any lossless data compression method that attempts to approach the lower bound declared by Shannon's source coding theorem, which states that any lossless data compression method must have expected code length greater or equal to the entropy of the source. More precisely, the source coding theorem states that for any source distribution, the expected code length satisfies , where is the number of symbols in a code word, is the coding function, is the number of symbols used to make output codes and is the probability of the source symbol.
Microstate (statistical mechanics)
In statistical mechanics, a microstate is a specific configuration of a system that describes the precise positions and momenta of all the individual particles or components that make up the system. Each microstate has a certain probability of occurring during the course of the system's thermal fluctuations. In contrast, the macrostate of a system refers to its macroscopic properties, such as its temperature, pressure, volume and density.
Ensemble (mathematical physics)
In physics, specifically statistical mechanics, an ensemble (also statistical ensemble) is an idealization consisting of a large number of virtual copies (sometimes infinitely many) of a system, considered all at once, each of which represents a possible state that the real system might be in. In other words, a statistical ensemble is a set of systems of particles used in statistical mechanics to describe a single system. The concept of an ensemble was introduced by J. Willard Gibbs in 1902.
Boosting (machine learning)
In machine learning, boosting is an ensemble meta-algorithm for primarily reducing bias, and also variance in supervised learning, and a family of machine learning algorithms that convert weak learners to strong ones. Boosting is based on the question posed by Kearns and Valiant (1988, 1989): "Can a set of weak learners create a single strong learner?" A weak learner is defined to be a classifier that is only slightly correlated with the true classification (it can label examples better than random guessing).
Pythia
Pythia (ˈpɪθiə; Πυθία pyːˈthíaː) was the name of the high priestess of the Temple of Apollo at Delphi. She specifically served as its oracle and was known as the Oracle of Delphi. Her title was also historically glossed in English as the Pythoness. The name Pythia is derived from Pytho, which in myth was the original name of Delphi. Etymologically, the Greeks derived this place name from the verb πύθειν () "to rot", which refers to the sickly sweet smell from the decomposing body of the monstrous Python after it was slain by Apollo.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.