In statistical mechanics, a microstate is a specific configuration of a system that describes the precise positions and momenta of all the individual particles or components that make up the system. Each microstate has a certain probability of occurring during the course of the system's thermal fluctuations.
In contrast, the macrostate of a system refers to its macroscopic properties, such as its temperature, pressure, volume and density. Treatments on statistical mechanics define a macrostate as follows: a particular set of values of energy, the number of particles, and the volume of an isolated thermodynamic system is said to specify a particular macrostate of it. In this description, microstates appear as different possible ways the system can achieve a particular macrostate.
A macrostate is characterized by a probability distribution of possible states across a certain statistical ensemble of all microstates. This distribution describes the probability of finding the system in a certain microstate. In the thermodynamic limit, the microstates visited by a macroscopic system during its fluctuations all have the same macroscopic properties.
In a quantum system, the microstate is simply the value of the wave function.
Statistical mechanics links the empirical thermodynamic properties of a system to the statistical distribution of an ensemble of microstates. All macroscopic thermodynamic properties of a system may be calculated from the partition function that sums of all its microstates.
At any moment a system is distributed across an ensemble of microstates, each labeled by , and having a probability of occupation , and an energy . If the microstates are quantum-mechanical in nature, then these microstates form a discrete set as defined by quantum statistical mechanics, and is an energy level of the system.
The internal energy of the macrostate is the mean over all microstates of the system's energy
This is a microscopic statement of the notion of energy associated with the first law of thermodynamics.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In statistical mechanics, the grand canonical ensemble (also known as the macrocanonical ensemble) is the statistical ensemble that is used to represent the possible states of a mechanical system of particles that are in thermodynamic equilibrium (thermal and chemical) with a reservoir. The system is said to be open in the sense that the system can exchange energy and particles with a reservoir, so that various possible states of the system can differ in both their total energy and total number of particles.
In statistical thermodynamics, thermodynamic beta, also known as coldness, is the reciprocal of the thermodynamic temperature of a system: (where T is the temperature and kB is Boltzmann constant). It was originally introduced in 1971 (as Kältefunktion "coldness function") by de, one of the proponents of the rational thermodynamics school of thought, based on earlier proposals for a "reciprocal temperature" function. Thermodynamic beta has units reciprocal to that of energy (in SI units, reciprocal joules, ).
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
This course presents an introduction to statistical mechanics geared towards materials scientists. The concepts of macroscopic thermodynamics will be related to a microscopic picture and a statistical
The local physical properties - such as shape and flexibility - of the DNA double-helix is today widely believed to be influenced by nucleic acid sequence in a non-trivial way. Furthermore, there is strong evidence that these properties play a role in many ...
We study the statistical mechanics and the equilibrium dynamics of a system of classical Heisenberg spins with frustrated interactions on a d -dimensional simple hypercubic lattice, in the limit of infinite dimensionality d -> infinity . In the analysis we ...
Predicting the thermal conductivity of glasses from first principles has hitherto been a very complex problem. The established Allen-Feldman and Green-Kubo approaches employ approximations with limited validity-the former neglects anharmonicity, the latter ...