Publication

Learning to Retrieve Images from Text Queries with a Discriminative Model

Samy Bengio, David Grangier, Florent Monay Michaud
2006
Report or working paper
Abstract

This work presents a discriminative model for the retrieval of pictures from text queries. The core idea of this approach is to minimize a loss directly related to the retrieval performance of the model. For that purpose, we rely on a ranking loss which has recently been successfully applied to text retrieval problems. The experiments performed over the Corel dataset show that our approach compares favorably with generative models that constitute the state-of-the-art (e.g. our model reaches 21.6% mean average precision with Blob and SIFT features, compared to 16.7% for PLSA, the best alternative).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.