Publication

Nd:YAG laser joining between stainless steel and nickel-titanium shape memory alloys

Abstract

Nickel-Titanium (NiTi) shape memory alloys are often used in medical component devices, for instance as guide wires for neurological surgery applications. The manufacture of such devices becomes more and more challenging, especially considering the need to join them with other metals. Laser welding is a promising technique to realize and to guaranty the mechanical stability of dissimilar metal welds, although inherent differences in chemical compositions, absorption, physical and thermo-mechanical properties can lead to severe problems, in particular fracture of the weld due to the possible formation of brittle intermediate phases. Laser welds of NiTi - stainless steel (SS) pieces have been made with a Nd:YAG laser and the weld microstructure have been studied by Scanning Electron Microscopy (SEM). The phases and defects in these welds have been compared with those observed in autogenous NiTi welds and SS welds. They have been put into relation with the Fe-Ni-Ti ternary phase diagram. In addition, Differential Thermal Analyses (DTA) of NiTi-SS alloys and NiTi-SS diffusion couple experiments have been performed in order to gain a better understanding of the phases and reactions occurring during laser welding. This diffusive couple experiments have been analyzed by Energy Dispersive X-ray Spectroscopy (EDX) It appeared that although experiments were performed under controlled atmosphere, oxide layers have restrained the chemical diffusion of concerned elements. Further diffusion couple experiments will be realized with stainless steel welded caps to avoid oxygen contamination during heating.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Welding
Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature techniques such as brazing and soldering, which do not melt the base metal (parent metal). In addition to melting the base metal, a filler material is typically added to the joint to form a pool of molten material (the weld pool) that cools to form a joint that, based on weld configuration (butt, full penetration, fillet, etc.
Laser beam welding
Laser beam welding (LBW) is a welding technique used to join pieces of metal or thermoplastics through the use of a laser. The beam provides a concentrated heat source, allowing for narrow, deep welds and high welding rates. The process is frequently used in high volume and precision requiring applications using automation, as in the automotive and aeronautics industries. It is based on keyhole or penetration mode welding.
Nickel titanium
Nickel titanium, also known as nitinol, is a metal alloy of nickel and titanium, where the two elements are present in roughly equal atomic percentages. Different alloys are named according to the weight percentage of nickel; e.g., nitinol 55 and nitinol 60. Nitinol alloys exhibit two closely related and unique properties: the shape memory effect and superelasticity (also called pseudoelasticity).
Show more
Related publications (46)

Non-negative matrix factorization-aided phase unmixing and trace element quantification of STEM-EDXS data

Cécile Hébert, Duncan Thomas Lindsay Alexander, James Badro, Farhang Nabiei, Hui Chen

Energy-dispersive X-ray spectroscopy (EDXS) mapping with a scanning transmission electron microscope (STEM) is commonly used for chemical characterization of materials. However, STEM-EDXS quantification becomes challenging when the phases constituting the ...
Elsevier2024

Control of intermetallics in the interface in directed energy deposition of titanium on stainless steel 316L

Di Cui

Application of a single metal or alloy is often restricted by its properties from optimal combination of performance and cost. Therefore, there is a vast need of joining dissimilar metals for various applications in biomedical, aerospace, automobile and ma ...
EPFL2023

Advantages and Limitations of Surface Analysis Techniques on Plasma-Treated Arabidopsis thaliana Seeds

Ivo Furno, Alan Howling, Alexandra Waskow

Surface characterization of plasma-treated seeds has made significant progress over the last decade. Most papers in the literature use scanning electron microscopy (SEM) and contact angle goniometry to investigate surface modifications. However, very few p ...
2021
Show more
Related MOOCs (17)
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.