Current Induced Magnetization Dynamics in Electrodeposited Nanostructures
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Space-time (ST) wave packets, in which spatial and temporal characteristics are coupled, have gained attention due to their unique propagation characteristics, such as propagation invariance and tunable group velocity in addition to their potential ability ...
Research into mesoscopic magnetic systems, which incorporate magnetic elements with dimensions ranging from a few nm up to a few 10s of micrometer, has been spurred on by the developments in their fabrication, characterisation, and control. Electron beam a ...
Collective spin excitations can propagate in magnetically ordered materials in the form of waves. These so-called spin waves (SWs) or magnons are promising for low-power beyond-CMOS information processing, which does not rely anymore on the lossy movement ...
In general, there are different, relatively independent forms of orbital angular momenta at a given propagation distance, which might exhibit different dynamic spatial characteristics. One type involves a beam with a helical phase-front that rotates around ...
Magnetic thin films and magnetic nanostructures have become essential components of modern technological applications. Modern branches of magnetisms focus on spin-charge coupling (spintronics) and the collective excitation of spin waves in magnetically ord ...
Magnetic bit writing by short-wave magnons without conversion to the electrical domain is expected to be a game-changer for in-memory computing architectures. Recently, the reversal of nanomagnets by propagating magnons was demonstrated. However, experimen ...
The continuous reduction of the structural size in nanotechnology slowed down over the last decade, approaching the natural limit of single atoms as building blocks of matter. Therefore, intensive research is directed toward exploring new frontiers, in par ...
We demonstrate that a spin current flowing through a nanocontact into a uniaxial antiferromagnet with first- and second-order anisotropy can excite a self-localized dynamic magnetic soliton, known as a spin-wave droplet in ferromagnets. The droplet nucleat ...
Magnonics addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility wit ...
Spin waves (SWs) are collective excitations of the spin ensemble in systems with magnetic order. In quantum mechanics, a SW is known as a magnon, which is the quasiparticle describing the quantized nature of these wave-like excitations. Magnonics is the re ...