Fluorescence techniques: shedding light on ligand-receptor interactions
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Numerous key biological processes rely on the concept of multivalency, where ligands achieve stable binding only upon engaging multiple receptors. These processes, like viral entry or immune synapse formation, occur on the diffusive cellular membrane. One ...
Chimeric antigen receptors (CARs) are synthetic, transmembrane proteins that trigger immune cell signaling following their engagement. They have been first utilized in T cells and later in natural killer (NK) cells to redirect their cytotoxicity toward a s ...
G-protein-coupled receptors (GPCRs) are the largest class of cell surface receptors and drug targets, and respond to a wide variety of chemical stimuli to activate diverse cellular functions. Understanding and predicting how ligand binding triggers a speci ...
G protein-coupled receptors (GPCRs) are 7-transmembrane alpha-helical integral membrane proteins on which cells heavily rely to receive information regarding their external environment. These receptors are able to transfer information to intracellular down ...
Synthetic biology aims to engineer cells as miniature biological devices to sense, process, and respond to exogenous stimuli. Protein switches are designed to sense and respond to various molecular queues in a fast and specific manner, which fits the requi ...
Cell surface receptors allowthe cell to sense and respond to external signals. Receptor malfunctions are associated with many diseases. The diffusional behavior of receptors is of particular interest to understand how the cell modulates receptor function i ...
G protein-coupled receptors play essential roles in cellular processes such as neuronal signaling, vision, olfaction, tasting, and metabolism. As GPCRs are the most important drug targets, understanding their interactions with ligands is of utmost importan ...
Lateral diffusion enables efficient interactions between membrane proteins leading to signal transmission across the plasma membrane. An open question is how the spatio-temporal distribution of cell surface receptors influences the transmembrane signaling ...
American Society for Biochemistry and Molecular Biology2015
G-protein-coupled receptors (GPCRs) are important targets for treating severe diseases. However why certain molecules act as activators whereas others, with similar structures, block GPCR activation, is poorly understood since the same molecule can activat ...
TGR5 is a G-protein-coupled receptor (GPCR) mediating cellular responses to bile acids (BAs). Although some efforts have been devoted to generate homology models of TGR5 and draw structure-activity relationships of BAs, none of these studies has hitherto d ...