Computing excitons in V-shaped quantum wires including band-structure and dielectric effects: binding energies and polarization anisotropy of the bright A(1), B-1, A(2) excitons
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present recent results related to the modelling, design, and application of graphene surfaces. Mono and multilayer graphene surfaces are patterned in a periodic or quasi-periodic manner to tailor their electromagnetic response in terms of magnitude, pha ...
We demonstrate plasmon-mechanical coupling in a metalized nanomechanical oscillator. A coupled surface plasmon is excited in the 25 nm wide gap between two metalized silicon nitride beams. The strong plasmonic dispersion allows the nanomechanical beams the ...
Graphene, an atomically thin sheet of carbon, is the most recent endeavor for the application of carbon nanostructures in conventional electronics. The envisioned creation of devices completely carved out of graphene could lead to the revolution of electro ...
Periodically corrugated epitaxial graphene and hexagonal boron nitride (h-BN) on metallic substrates are considered as perspective templates for the self-assembly of nanoparticles arrays. By using first-principles calculations, we determine binding energie ...
We combine optical microspectroscopy and electronic measurements to study how gold deposition affects the physical properties of graphene. We find that the electronic structure, the electron-phonon coupling, and the doping level in gold-plated graphene are ...
We demonstrate a novel fabrication approach for high-throughput fabrication of engineered plasmonic antenna arrays and metamaterials with Nanostencil Lithography (NSL). NSL technique, relying on deposition of materials through a shadow mask, offers the fle ...
This thesis explores different aspects of DNA topology through experimental and numerical techniques. Topology is a vast mathematical field, that deals with the spatial properties of objects undergoing continuous deformations, but here it is restricted to ...
We demonstrate a novel fabrication approach for high-throughput fabrication of engineered infrared plasmonic nanorod antenna arrays with nanostencil lithography (NSL). NSL technique, relying on deposition of materials through a shadow mask, offers the flex ...
The propagation of surface waves along spatially dispersive graphene-based 2-D waveguides is investigated in detail. Graphene is characterized using a full-k(rho) conductivity model under the relaxation-time approximation, which allows to obtain analytical ...
Institute of Electrical and Electronics Engineers2013
The propagation of plasmons on magnetically biased graphene sheets is addressed. The analysis is based on the transverse resonance method extended to handle the graphene conductivity tensor and allows easily accounting for substrate effects. A transcendent ...