Separation and Duality in Locally L0-Convex Modules
Related publications (61)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study a fixed point property for linear actions of discrete groups on weakly complete convex proper cones in locally convex topological vector spaces. We search to understand the class of discrete groups which enjoys this property and we try to generali ...
We consider the problem of finding a saddle point for the convex-concave objective minxmaxyf(x)+⟨Ax,y⟩−g∗(y), where f is a convex function with locally Lipschitz gradient and g is convex and possibly non-smooth. We propose an ...
The TISO-10-kW solar plant, connected to the grid in 1982, is the oldest installation of this kind in Europe. Its history is well documented, and the full set of modules has been tested indoors at regular intervals over the years. After 35 years of operati ...
A multifiltration is a functor indexed by Nr that maps any morphism to a monomorphism. The goal of this paper is to describe in an explicit and combinatorial way the natural Nr-graded R[x(1),...x(r)]-module structure on the homology of a multifiltration of ...
Let G be a classical group with natural module V over an algebraically closed field of good characteristic. For every unipotent element u of G, we describe the Jordan block sizes of u on the irreducible G-modules which occur as compositio ...
In [8] we introduced the notion of multi-Koszul algebra: it is an extension of the definition of generalized Koszul algebra given by R. Berger in [1] for homogeneous algebras (see also [7]) that can be applied to any nonnegatively graded connected algebra ...
A convolution algebra is a topological vector space X that is closed under the convolution operation. It is said to be inverse-closed if each element of X whose spectrum is bounded away from zero has a convolution inverse that is also part of the algebra. ...
We characterize the solution of a broad class of convex optimization problems that address the reconstruction of a function from a finite number of linear measurements. The underlying hypothesis is that the solution is decomposable as a finite sum of compo ...
We analyze the adaptive first order algorithm AMSGrad, for solving a constrained stochastic optimization problem with a weakly convex objective. We prove the O~(t−1/2) rate of convergence for the squared norm of the gradient of Moreau envelope, ...
We investigate the representation theory of finite sets. The correspondence functors are the functors from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. They have various specific properties wh ...