Gallium arsenide p-i-n radial structures for photovoltaic applications
Related publications (111)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
GaAs nanowires are grown by molecular beam epitaxy using a self-catalyzed, Ga-assisted growth technique. Position control is achieved by nano-patterning a SiO2 layer with arrays of holes with a hole diameter of 85 nm and a hole pitch varying between 200 nm ...
We present test results from a novel modular scintillating fiber tracker using silicon photomultiplier (SiPM) arrays for readout. The tracker modules are made up from 250 mu m thin scintillating fibers that are arranged in five tightly packed layers on top ...
Self-catalyzed growth of axial InxGa1-xAs/GaAs heterostructures has been realized by molecular beam epitaxy. The growth of the wires is achieved from gallium/indium alloy droplets that are nucleated in situ. By variation of the In/Ga beam flux during the g ...
We present a novel “brick and mortar” strategy for creating highly efficient transparent TiO2 coatings for photocatalytic and photovoltaic applications. Our approach is based on the fusion of preformed titania nanocrystalline “bricks” through surfactant-te ...
Gallium arsenide p-i-n radial junctions were fabricated by molecular beam epitaxy. The current-voltage characteristics of single nanowires were measured in the dark and under various illumination conditions including 1.5 AM. The total efficiency was 4.5%. ...
The working electrode of a dye-sensitized photovoltaic fiber is constituted of a porous TiO2 coated titanium wire. The cohesion and adhesion of such a brittle oxide coating on the ductile metal substrate are identified as crucial factors in maintaining pho ...
A terrylene chromophore exhibiting a high extinction coeff. has been developed as a sensitizer for photovoltaic applications. The photophys. and photochem. properties of the dye were analyzed both exptl. and theor. Terrylene-sensitized nanocryst. TiO2 sola ...
This PhD thesis work describes the study of III-nitride based planar microcavities operating in the strong coupling regime at room temperature. The aim is to use the nonlinear emission properties of such samples in realistic devices. Furthermore these stud ...
A study of the GaN nanocolumns nucleation and growth by molecular beam epitaxy on Si(111) is presented. Ga droplets with different diameters (340-90 nm) were deposited on the substrate. prior to growth, to determine any effect on the nanocolumns size and d ...
InAs columnar quantum dash (CQDash) structures on (100) InP have been realized by gas source molecular beam epitaxy for stacking numbers of up to 24. Laser devices show low threshold current densities between 0.73 and 3.5 kA/cm(2), dependent on the CQDash ...