Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires
Related publications (50)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper the fundamental properties of heterostructures based on semiconductor nanowires synthesized with molecular beam epitaxy are reviewed. Special focus is given on surface passivation mechanisms with radial epitaxial passivation shells. The growt ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2011
To date, the use of gold for the synthesis of nanowires has proven to be nearly impossible to circumvent, regardless of the potential negative effects on the nanowires physical properties. In this paper, the synthesis of gallium arsenide nanowires without ...
Institute of Electrical and Electronics Engineers2011
GaAs nanowires were heated locally under ambient air conditions by a focused laser beam which led to oxidation and formation of crystalline arsenic on the nanowire surface. Atomic force microscopy, photoluminescence and Raman spectroscopy experiments were ...
The structural and optical properties of controlled-heterostructure-potential, low-dimensional GaAs/AlGaAs nanostructures self-formed during organometallic chemical vapor deposition in tetrahedral pyramids etched in (111) B-GaAs substrates, are investigate ...
InAs quantum dot arrays are obtained on GaAs nanowire facets by molecular beam epitaxy. The GaAs nanowires are first grown by the gallium-assisted catalyst-free method. Decoration of the nanowire facets with InAs quantum dots is achieved only when the face ...
Odd electron diffraction patterns (EDPs) have been obtained by transmission electron microscopy (TEM) on silicon nanowires grown via the vapour-liquid-solid method and on silicon thin films deposited by electron beam evaporation. Many explanations have bee ...
GaAs nanowires are grown by molecular beam epitaxy using a self-catalyzed, Ga-assisted growth technique. Position control is achieved by nano-patterning a SiO2 layer with arrays of holes with a hole diameter of 85 nm and a hole pitch varying between 200 nm ...
The structural and optical properties of three different kinds of GaAs nanowires with 100% zinc-blende structure and with an average of 30% and 70% wurtzite are presented. A variety of shorter and longer segments of zinc-blende or wurtzite crystal phases a ...
The growth of GaAs nanowires by the gallium-assisted method with molecular beam epitaxy (MBE) is presented in this review article. The structure of the grown nanowires was investigated by means of scanning and transmission electron microscopy as well as Ra ...
A contacting scheme to measure the transport properties into self-assembled InAs Quantum Wires (QWRs) or Quantum Dots (QDs) is presented. The nanostructures are formed on the (110) cleaved edge of a AlAs/AlGaAs heterostructure substrate by means of the Cle ...